• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Fassara Na Zamani na IEE-Business

Electrical4u
فیلڈ: Karkashin Kuliya da Dukkana
0
China

Laplace Transform Initial Value Theorem

Teorema na Nau'i mai suna da dukkan cikin al'amuran Laplace transform. An bayar shi ne aiki na tarihi na French Mathematical Physicist Pierre Simon Marquis De Laplace. Ya yi aiki mai yawa a kan abubuwa masu harkokin kasa da amfani da teoriya na Gravitation na Newton. Aikinsa game da teoriya na probability da statistika ya zama babban nasara da take tabbatar da jami'a masu aiki a cikin tarihin Mathematician. Laplace ya zama daya daga 72 mutanen da suka fi sune sunan su a Eiffel Tower.
Teorema na Nau'i da Teorema na Rike suna da suka kira waɗannan ana kiran suna da suka kira Limiting Theorems. Ana kiran Teorema na Nau'i mafi tsawo a matsayin IVT. Zai iya ba muna da nau'in bayan f(t) (laplace) a lokacin t = (0+) bace ba a yi aiki mai kyau don samun f(t) wanda shi ne aiki mai karfi a cikin halin da ba.

Kunan da ke nufin da aka da Teorema na Nau'i


  1. Funkshin f(t) da karamin f(t) ya kamfanon da za su iya Laplace transformable.

  2. Idan lokacin t ta gama zuwa (0+) funkshin f(t) ya kamfanon da za su iya wuce.

  1. Funkshin f(t) = 0 idan t > 0 da kuma bai da impulses ko singularities masu yawan adadin da suka haɗa a asalin.

Bayanin Teorema na Nau'i na Laplace

Idan f(t) da F(s) suka bi Laplace transform pairs. i.e

don haka Teorema na Nau'i ya kasance

Laplace transform na funkshin f(t) shi ne

don haka Laplace transform na karamin f ‘ (t) shi ne

Yana da integral part first

An substituta (2) a (1) muna samu

Ba da cancella f (0) a duk biyu muna samu

Za a iya rubuta equation da ma ake so a matsayin ma ake so, amma intensiongaski a matsayin limits of integration daga (0 zuwa ∞) shine cewa idan an samun values na negative ya kamfanon da za su iya samun results na positive.

Note:
An san cewa Laplace transform ya kamfanon da za su iya applicability only for causal functions.
Idan an samun (s) ta gama zuwa infinity a duk biyu a (3)

Don haka, Teorema na Nau'i ya gama da shiga.

Ayoyinta na Teorema na Nau'i

Daga cikin irin da na ce bayanin Teorema na Nau'i shine don samun nau'in bayan funkshin f (t) idan an bayar Laplace transform.
Misali 1 :
Samun nau'in bayan funkshin f (t) = 2 u (t) + 3 cost u (t)
Sol:

By initial value theorem

Nau'in bayan shi ne 5.
Misali 2:
Samun nau'in bayan transformed function

Sol:

By initial value theorem

[as s → ∞ the values of s become more and more insignificant hence the result is obtained by simply taking the ratio of leading co-efficient]

Ba da kyau kuma kara mai rubutu!

Tambayar Da Yawanci

Kashe da Tattalin Kasa na Kirkiro Gida a Ƙarfin Kirkiro 10kV
Karakteristikai da Kwayoyin Tsohon Gaba na Fasal Akwai Wata1. Karakteristikai na Fasal Akwai WataSignaolin Alarami na Wasu:Bello na alarami ya kara, kuma lampan na bayani "Fasal Akwai Wata a [X] kV Bus Section [Y]" ta kafa. A cikin sistemai da ke amfani da Petersen coil (coil na paka wata) don kare gaba na neutral point, lampan na "Petersen Coil Operated" kuma ta kafa.Bayanin Voltmeter na Paka Insulation:Tushe na fasal akwai wata ta zama yawa (a lokacin da ke tsakanin paka mai yawa) ko ta daga z
01/30/2026
Gidamintar da take gudanar da shi a wurin karkashin 110kV~220kV na IEE-Business
Na gaba da hanyar kan zabe ta rike masu shirya na 110kV~220kV, yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti suka dace da muhimmanci, kuma yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti suke musamman. Kuma yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti ba suka fi yawa da tare da uku da zabe ta rike masu shirya na tsakiyar karamin sauti.Don sabbin abubuwa da kuma hanyoyin kimiyya, zabe ta rike masu shirya na 220kV da 110kV ya kamata
01/29/2026
Dausu Da Yadda Makarantu Sun Yi Amfani Da Dukkuka Karamin Gwanda Na Karamin Jiya Da Karamin Rokki?
Daga Yana Da Iya Mafi Masu Shiga Karamin Jiragen, Kwararren, Makarantun Dukai Da Kuma Makarantun Giwa?A cikin masu shiga karami, wasu kayan aiki kamar muhimmanci da kuma muhimmanci na noma, tushen bayyana, muhimmanci da kuma muhimmanci na tsakiyar, da kuma muhimmanci na tsakiyar suna bukatar shiga karami. A kan nan, zan iya fahimta daga baya ta hanyar yadda ake amfani da kwararren da kuma makarantun dukai a cikin masu shiga karami. Ba saboda haka, wannan kwararre ya taka rawa masu dalilai da kum
01/29/2026
HECI GCB for Generators – Fast SF₆ Circuit Breaker HECI GCB for Generators – Karamin Kirki na SF₆
1. Tasharrafu da Funtuka1.1 Ruhunin Kirkiyar Kirkiyar KuliyaKirkiyar Kirkiyar Kuliya (GCB) shi ne tushen kawo kawo da ake iya gudanar da ita wanda yake kan bayan kuliya da kirkiyars gudanar da abubuwan rayuwa. An fi sani da shi a matsayin muhimmanci na kuliya da grid ta masara. Funtukan da suka biyo sun hada da gudanar da abubuwan dole na kuliya da kuma gudanar da abubuwan rayuwar da aka yi a lokacin da ake haɗa da kuliya da kuma grid ta masara. Addinin da GCB ya yi ba shi da cikakken farko da k
01/06/2026
Aika tambaya
+86
Dauke kake saita fayil
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.