• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Nini ni Tahlilizi Nafasi ya Hali?

Encyclopedia
Champu: Maktaba ya Kiambatanisha
0
China


Ni nini State Space Analysis?


Maana ya State Space Analysis


Tathmini nyanja ya hali ya mikakati ya kudhibiti ni njia ya kutathmini mikakati madogo na magumu kutumia seti ya viwango kwa kuwasifu utendaji wao kwa muda.


Maelezo ya Nyanja ya Hali


Hivi sasa tujenge maelezo ya nyanja ya hali ya mfumo ambayo ni wa kihesabu na haiingie muda.


Tuangalie mfumo wa vingineko vingi na matumizi mengi ambayo ana vingineko r na matumizi m.


Kwenye, r = u1, u2, u3 ……….. ur.


Na m = y1, y2 ……….. ym.


Sasa tunapata n viwango vya hali kusaidia kusaidia kuelezea mfumo uliyotolewa kwa hiyo n = x1, x2, ……….. xn.


Pia tunaelezea vekta za vingineko na matumizi kama,


Vekta ya vingineko transposha,

 

Kwenye, T ni transposha ya matrix.


4ec21880208e50398e2147e2c94be95c.jpeg

 

Vekta ya matumizi transposha,

 

Kwenye, T ni transposha ya matrix.


Vekta ya hali transposha,

 

Kwenye, T ni transposha ya matrix.


Viwango hivi vinajungwa na seti ya maelezo ambayo yameandikwa chini na yanayojulikana kama maelezo ya nyanja ya hali


2f6c48f719835461d76258222a75c74a.jpeg


Uelezaji wa Modeli ya Hali kwa Kutumia Function ya Kupitisha


Gawanya : Ina maana ya mchakato wa kupata modeli ya hali kutoka kwa function ya kupitisha iliyotolewa. Sasa tunaweza kugawanya function ya kupitisha kwa mitaala gawa mbalimbali:


  • Gawanya moja kwa moja,

  • Gawanya ya kipaza au series,

  • Gawanya parallel.


Katika zote mizizi ya gawanya tulizopewa hapo juu tuwanapo badilisha function ya kupitisha kwa maelezo ya differential ambayo inatafsiriwa kama maelezo ya dynamic. Baada ya kubadilisha kwa maelezo ya differential tutapata inverse Laplace transform ya maelezo hili halisi kisha kulingana na aina ya gawanya tunaweza kurudia modeli. Tunaweza kurudia yoyote aina ya function ya kupitisha kwa modeli ya hali. Tunapewa aina mbalimbali za modeli kama vile modeli ya umeme, modeli ya mifano ya mekani ya mifano.


Expression of Transfer Matrix in terms of A, B, C and D. We define transfer matrix as the Laplace transform of output to the Laplace transform of input.On writing the state equations again and taking the Laplace transform of both the state equation (assuming initial conditions equal to zero) we have

 

We can write the equation as


Where, I is an identity matrix


Now substituting the value of X(s) in the equation Y(s) and putting D = 0 (means is a null matrix) we have


Inverse of matrix can substitute by adj of matrix divided by the determinant of the matrix, now on rewriting the expression we have of


|sI-A| is also known as characteristic equation when equated to zero.

 

e6b9367897ab964505ee2e0d51ac6aef.jpeg

 

Concept of Eigen Values and Eigen Vectors


The roots of characteristic equation that we have described above are known as eigen values or eigen values of matrix A.Now there are some properties related to eigen values and these properties are written below-


  • Any square matrix A and its transpose At have the same eigen values.



  • Sum of eigen values of any matrix A is equal to the trace of the matrix A.



  • Product of the eigen values of any matrix A is equal to the determinant of the matrix A.



  • If we multiply a scalar quantity to matrix A then the eigen values are also get multiplied by the same value of scalar.



  • If we inverse the given matrix A then its eigen values are also get inverses.



  • If all the elements of the matrix are real then the eigen values corresponding to that matrix are either real or exists in complex conjugate pair.



Now there exists one eigen vector corresponding to one Eigen value, if it satisfy the following condition (ek × I – A)Pk = 0. Where, k = 1, 2, 3, ……..n.

 


State Transition Matrix and Zero State Response


We are here interested in deriving the expressions for the state transition matrix and zero state response. Again taking the state equations that we have derived above and taking their Laplace transformation we have,

 

Now on rewriting the above equation we have

 

d0ebabef77893dcbbf49dc9134298e1e.jpeg

 

Let [sI-A] -1 = θ(s) and taking the inverse Laplace of the above equation we have

 

The expression θ(t) is known as state transition matrix.


 

3ea0118a055da16d7af19dc530ebf4fe.jpeg

 

L-1.θ(t)BU(s) = zero state response.

 

Now let us discuss some of the properties of the state transition matrix.

 

  • If we substitute t = 0 in the above equation then we will get 1. Mathematically we can write θ(0) =1.



  • If we substitute t = -t in the θ(t) then we will get inverse of θ(t). Mathematically we can write θ(-t) = [θ(t)]-1.


  • We also another important property [θ(t)]n = θ(nt). 


Tambua na hamisha mshairi!

Mapendekezo

Matukio na Upatikanaji wa Kupata Ardhi moja kwenye Mstari wa Maendeleo wa 10kV
Vipengele na Vifaa vya Kugundua Matatizo ya Uhamisho wa Awali kwa Mwamba1. Vipengele vya Matatizo ya Uhamisho wa Awali kwa MwambaIsara za Alama ya Kati:Kumbukumbu ya kujitambulisha inaanza kusimama, na taa ya maelezo iliyowekwa “Uhamisho wa Awali kwa Sehemu ya Bus ya [X] kV [Y]” inaangazia. Katika mifumo yenye uhamisho wa nukta ya neutral kwa kutumia koi la Petersen (koi la kuzima moto), taa ya “Koi la Petersen Imefanya Kazi” pia inaangazia.Maelezo ya Voltmeter ya Kufuatilia Uzalishaji wa Umeme:
01/30/2026
Mfano wa kufanya kazi ya kuweka mizizi ya chini ya umeme kwa vifaa vya kupamba umeme vya 110kV~220kV
Mfano wa mazingira ya kufunga chini ya pointi za neutrali za trafomu za gridi ya umeme 110kV~220kV lazima ufuatilie miundombinu ya kutahadhari insulation ya pointi za neutrali za trafomu, na pia lazima jaribu kuendelea kukudumu impedance ya zero-sequence ya steshoni za umeme, huku hakikisha kwamba impedance ya zero-sequence comprehensive katika chochote pointi cha short-circuit muhimu si zaidi ya mara tatu ya positive-sequence comprehensive impedance.Kwa trafomu za 220kV na 110kV katika majukwaa
01/29/2026
Kwa Nini Viwanda vya Umeme Husatumia Mawe Kichwa Kidogo Kivuli na Mawe Vinavyovunjika?
Kwa Nini Mstatio wa Nishati Huatumia Michororo, Mchanga, Michororo Madogo na Michororo Iliyovunjwa?Katika mstatio wa nishati, vifaa kama vile transforma za umeme na usambazaji, mistari ya usambazaji, transforma za voltaji, transforma za sasa na vichapishi vya kujitenga vinahitaji kuunganishwa na ardhi. Kupita juu ya uunganisho na ardhi, sasa tutafurahia kuchunguza kina kwa nini mchanga na michororo iliyovunjwa huatumika mara kwa mara katika mstatio wa nishati. Ingawa yanaonekana rahisi, michoror
01/29/2026
HECI GCB kwa Mawimbi – Kifuniko la Kufunga Sifa ya SF₆ Haraka
1. Maana na Kazi1.1 Uelewa wa Kitambaa cha Mzunguko wa Umeme wa MgeniKitambaa cha Mzunguko wa Umeme wa Mgeni (GCB) ni kitambaa chenye upatikanaji unaweza kutathmini kati ya mgeni na transformer wa kuongeza nguvu, kama msingi wa uhusiano kati ya mgeni na mtandao wa umeme. Mikazi yake muhimu zinazofaa ni kuzuia matukio katika upande wa mgeni na kuwasaidia mikakati za utaratibu wakati wa ushirikiano wa mgeni na mtandao wa umeme. Sera ya kufanya kazi ya GCB haijabadilika sana kutoka kwa kitambaa cha
01/06/2026
Tuma maoni
+86
Bonyeza kupakia faili
Pakua
Pata IEE Business Application
Tumia programu ya IEE-Business kupata vifaa kupata suluhisho kuunganisha wanaofanya kazi na kushiriki katika sekta yoyote wakati wowote mahali popote usisaidie maendeleo ya mipango yako ya umeme na biashara