• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Mai Da Dacewa na Iya Kafa?

Encyclopedia
Encyclopedia
فیلڈ: Dakilin ƙasashen ilimi
0
China


Me kadan Wani Abin da Yawanci?


Takardun Wani Abin da Yawanci


Wani abin da yawanci na dandamai ita ce hanyar bayyana masu yawan da keke da kuma mafi karfi game da wata matsayin cikakken bayanin tarihin su.


Muhimman Tushen Wani Abin da Yawanci


A zama tushen wani abin da yawanci na dandamai na tushen da suka gudana da tarihi da ya fi inganta.


Za a iya duba masu shirya da kuma masu fadada rike da r inputs da m outputs.


Idan, r = u1, u2, u3 ……….. ur.


Da m = y1, y2 ……….. ym.


Daga baya za mu iya samun n state variables don in bayyana dandamai na tarihi, saboda haka n = x1, x2, ……….. xn.


Kuma za mu iya takarda input da output vectors kamar yadda ake bayyana a nan,


Transpose of input vectors,

 

Idan, T ita ce transpose of the matrix.


4ec21880208e50398e2147e2c94be95c.jpeg

 

Transpose of output vectors,

 

Idan, T ita ce transpose of the matrix.


Transpose of state vectors,

 

Idan, T ita ce transpose of the matrix.


Wasu waɗannan variables suna da take da wasu tushen da ake rubuta a nan kuma suna canza a kan wani abin da yawanci.


2f6c48f719835461d76258222a75c74a.jpeg


Bayanin Model na State Ta Hanyar Transfer Function


Decomposition : Ana ƙirƙira wannan a matsayin yanayin samun model na state daga transfer function. Idan kuna iya ƙirƙira transfer function ta hanyar uku hanyoyi:


  • Decomposition na ɗaya,

  • Decomposition na series ko cascade,

  • Decomposition na parallel.


A cikin duk waɗannan hanyoyi na ƙirƙiri, a gaba muna ƙirƙira transfer function ta zuwa tushen differential equations, wanda ake kira tushen dynamic equations. Ba da ƙirƙirar zuwa tushen differential equations, muna ƙirƙira inverse Laplace transform ta, sannan ba da ƙirƙirar zuwa tushen decomposition, muna iya ƙirƙira model. Muna iya ƙirƙira wani abu a model na state. Akwai wasu hanyoyi na model kamar electrical model, mechanical model, da sauransu.


Expression of Transfer Matrix in terms of A, B, C and D. We define transfer matrix as the Laplace transform of output to the Laplace transform of input.On writing the state equations again and taking the Laplace transform of both the state equation (assuming initial conditions equal to zero) we have

 

We can write the equation as


Where, I is an identity matrix


Now substituting the value of X(s) in the equation Y(s) and putting D = 0 (means is a null matrix) we have


Inverse of matrix can substitute by adj of matrix divided by the determinant of the matrix, now on rewriting the expression we have of


|sI-A| is also known as characteristic equation when equated to zero.

 

e6b9367897ab964505ee2e0d51ac6aef.jpeg

 

Concept of Eigen Values and Eigen Vectors


The roots of characteristic equation that we have described above are known as eigen values or eigen values of matrix A.Now there are some properties related to eigen values and these properties are written below-


  • Any square matrix A and its transpose At have the same eigen values.



  • Sum of eigen values of any matrix A is equal to the trace of the matrix A.



  • Product of the eigen values of any matrix A is equal to the determinant of the matrix A.



  • If we multiply a scalar quantity to matrix A then the eigen values are also get multiplied by the same value of scalar.



  • If we inverse the given matrix A then its eigen values are also get inverses.



  • If all the elements of the matrix are real then the eigen values corresponding to that matrix are either real or exists in complex conjugate pair.



Now there exists one eigen vector corresponding to one Eigen value, if it satisfy the following condition (ek × I – A)Pk = 0. Where, k = 1, 2, 3, ……..n.

 


State Transition Matrix and Zero State Response


We are here interested in deriving the expressions for the state transition matrix and zero state response. Again taking the state equations that we have derived above and taking their Laplace transformation we have,

 

Now on rewriting the above equation we have

 

d0ebabef77893dcbbf49dc9134298e1e.jpeg

 

Let [sI-A] -1 = θ(s) and taking the inverse Laplace of the above equation we have

 

The expression θ(t) is known as state transition matrix.


 

3ea0118a055da16d7af19dc530ebf4fe.jpeg

 

L-1.θ(t)BU(s) = zero state response.

 

Now let us discuss some of the properties of the state transition matrix.

 

  • If we substitute t = 0 in the above equation then we will get 1. Mathematically we can write θ(0) =1.



  • If we substitute t = -t in the θ(t) then we will get inverse of θ(t). Mathematically we can write θ(-t) = [θ(t)]-1.


  • We also another important property [θ(t)]n = θ(nt). 


Ba da kyau kuma kara mai rubutu!
Tambayar Da Yawanci
Gidajen SPD na Tatu: Nau'o'i, Kofin Mataki da Tuntubiƙi
Gidajen SPD na Tatu: Nau'o'i, Kofin Mataki da Tuntubiƙi
1. Mishe Maimaita Masu Inganci na Tashin Jiki Uku (SPD)?Maimaita masu inganci na tashin jiki uku (SPD), wanda ake kira maimaita masu inganci na rayuwa, yana nuna da ita don kyakkyawar jiki uku na AC. Yakin daɗi mai gaba shi shine yaɗa masu inganci na zama na rayuwa ko kuma hanyoyi masu karkara a cikin tashin jiki, don haka ya magance ma'adanadon arziki daga inganci. SPD yana yi aiki a kan amfani da tasirin ruwa da kuma fitowa: idan an samun abin daɗi, yana ƙare da tsari da kuma tsafta abin daɗi
James
12/02/2025
Kungiyar Karamin Kirki 10kV ta Hanyar Rilway: Talabun Inganci da Yadda Ake Amfani Da Su
Kungiyar Karamin Kirki 10kV ta Hanyar Rilway: Talabun Inganci da Yadda Ake Amfani Da Su
Lambar Daquan na tafi masu mafi yawan karkashin sifa, da kuma tafukan da dama da ke cikin gaba. Har zuwa na tafukan ya kai kashi, da zan iya samun wani tafuka kowace 2-3 km, saboda haka ya kamata a yi amfani da abubuwan 10 kV waɗanda suke da suka taka siffo. Kukyawan kasa mai sauƙi suna amfani da biyu na lambar da suke da suka taka siffo: primary through line da comprehensive through line. Masu siffo na biyu suna ci gaba daga bus sections masu inganci da aka fitar da shi a kan gida-gida daban-da
Edwiin
11/26/2025
Tafiya na Amsa na Zama na Kirkiro da Koyarwa na Ilimin Kirkiro
Karamin Ingantaccen Kirkiro da Koyarwa na Ilimin Kirkiro
Tafiya na Amsa na Zama na Kirkiro da Koyarwa na Ilimin Kirkiro Karamin Ingantaccen Kirkiro da Koyarwa na Ilimin Kirkiro
A cikin tsarin tattalin arziki, muna buƙaci nuna hankalin halayyin da ke ciki kuma saita takaitaccen tsarin tattalin arziki mai dabe daben da yawa. Muna buƙaci nuna kama da irin arziki a cikin tsarin, sauƙaƙe shiga da abubuwan da ke yiwuwa don samun arzikin, kuma kowane iyaka da aka samu ta China. Alakarƙarren iya iya sanya abubuwan da suka yi wajen kama da irin arziki, kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kuma kama da arzi
Echo
11/26/2025
Tsunani Gargajiya na Ingantaccen Systolin Kashi da Turai
Tsunani Gargajiya na Ingantaccen Systolin Kashi da Turai
Dabbobi na gaban kashi suna da zubukan kashi da ke fada, kabluka mai kashi da ke fada, tashar kashi da kuma tashar kashi da kuma zubukan kashi. Sun bayarwa don inganta yadda ake amfani da kashi a cikin harkokin kashi—kamar ina iya kawo, ina iya kira, sassan kashi, ina iya kula da masu mafita, da kuma ina iya kula da masu abincin kashi. A matsayin wani muhimmiyar yanayi a cikin gabas na kashi na kasar, dabbobi na gaban kashi sun nuna haloyin kimiyya da kuma haloyin sassan kashi.Bayyana aiki a kan
Echo
11/26/2025
Aika tambaya
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.