• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Mai Da Dacewa na Iya Kafa?

Encyclopedia
Encyclopedia
فیلڈ: Dakilin ƙasashen ilimi
0
China


Me kadan Wani Abin da Yawanci?


Takardun Wani Abin da Yawanci


Wani abin da yawanci na dandamai ita ce hanyar bayyana masu yawan da keke da kuma mafi karfi game da wata matsayin cikakken bayanin tarihin su.


Muhimman Tushen Wani Abin da Yawanci


A zama tushen wani abin da yawanci na dandamai na tushen da suka gudana da tarihi da ya fi inganta.


Za a iya duba masu shirya da kuma masu fadada rike da r inputs da m outputs.


Idan, r = u1, u2, u3 ……….. ur.


Da m = y1, y2 ……….. ym.


Daga baya za mu iya samun n state variables don in bayyana dandamai na tarihi, saboda haka n = x1, x2, ……….. xn.


Kuma za mu iya takarda input da output vectors kamar yadda ake bayyana a nan,


Transpose of input vectors,

 

Idan, T ita ce transpose of the matrix.


4ec21880208e50398e2147e2c94be95c.jpeg

 

Transpose of output vectors,

 

Idan, T ita ce transpose of the matrix.


Transpose of state vectors,

 

Idan, T ita ce transpose of the matrix.


Wasu waɗannan variables suna da take da wasu tushen da ake rubuta a nan kuma suna canza a kan wani abin da yawanci.


2f6c48f719835461d76258222a75c74a.jpeg


Bayanin Model na State Ta Hanyar Transfer Function


Decomposition : Ana ƙirƙira wannan a matsayin yanayin samun model na state daga transfer function. Idan kuna iya ƙirƙira transfer function ta hanyar uku hanyoyi:


  • Decomposition na ɗaya,

  • Decomposition na series ko cascade,

  • Decomposition na parallel.


A cikin duk waɗannan hanyoyi na ƙirƙiri, a gaba muna ƙirƙira transfer function ta zuwa tushen differential equations, wanda ake kira tushen dynamic equations. Ba da ƙirƙirar zuwa tushen differential equations, muna ƙirƙira inverse Laplace transform ta, sannan ba da ƙirƙirar zuwa tushen decomposition, muna iya ƙirƙira model. Muna iya ƙirƙira wani abu a model na state. Akwai wasu hanyoyi na model kamar electrical model, mechanical model, da sauransu.


Expression of Transfer Matrix in terms of A, B, C and D. We define transfer matrix as the Laplace transform of output to the Laplace transform of input.On writing the state equations again and taking the Laplace transform of both the state equation (assuming initial conditions equal to zero) we have

 

We can write the equation as


Where, I is an identity matrix


Now substituting the value of X(s) in the equation Y(s) and putting D = 0 (means is a null matrix) we have


Inverse of matrix can substitute by adj of matrix divided by the determinant of the matrix, now on rewriting the expression we have of


|sI-A| is also known as characteristic equation when equated to zero.

 

e6b9367897ab964505ee2e0d51ac6aef.jpeg

 

Concept of Eigen Values and Eigen Vectors


The roots of characteristic equation that we have described above are known as eigen values or eigen values of matrix A.Now there are some properties related to eigen values and these properties are written below-


  • Any square matrix A and its transpose At have the same eigen values.



  • Sum of eigen values of any matrix A is equal to the trace of the matrix A.



  • Product of the eigen values of any matrix A is equal to the determinant of the matrix A.



  • If we multiply a scalar quantity to matrix A then the eigen values are also get multiplied by the same value of scalar.



  • If we inverse the given matrix A then its eigen values are also get inverses.



  • If all the elements of the matrix are real then the eigen values corresponding to that matrix are either real or exists in complex conjugate pair.



Now there exists one eigen vector corresponding to one Eigen value, if it satisfy the following condition (ek × I – A)Pk = 0. Where, k = 1, 2, 3, ……..n.

 


State Transition Matrix and Zero State Response


We are here interested in deriving the expressions for the state transition matrix and zero state response. Again taking the state equations that we have derived above and taking their Laplace transformation we have,

 

Now on rewriting the above equation we have

 

d0ebabef77893dcbbf49dc9134298e1e.jpeg

 

Let [sI-A] -1 = θ(s) and taking the inverse Laplace of the above equation we have

 

The expression θ(t) is known as state transition matrix.


 

3ea0118a055da16d7af19dc530ebf4fe.jpeg

 

L-1.θ(t)BU(s) = zero state response.

 

Now let us discuss some of the properties of the state transition matrix.

 

  • If we substitute t = 0 in the above equation then we will get 1. Mathematically we can write θ(0) =1.



  • If we substitute t = -t in the θ(t) then we will get inverse of θ(t). Mathematically we can write θ(-t) = [θ(t)]-1.


  • We also another important property [θ(t)]n = θ(nt). 


Ba da kyau kuma kara mai rubutu!
Tambayar Da Yawanci
Me Kowane Da Tururun Reaktor? Ayyuka Masu Muhimmanci a Tattalin Nau'i
Me Kowane Da Tururun Reaktor? Ayyuka Masu Muhimmanci a Tattalin Nau'i
Rikitar (Indukta): Tushen da Nau'ukanRikitar, wanda ake kira indukta, ya fara zama a cikin al'umma a lokacin da adan ya gudana a kan hanyar. Saboda haka, akwai inductance a cikin duk hanyar da ake gudana abubuwa. Amma, inductance na hanyar mai zurfi ita ce mai yawa da take fara zama a cikin al'umma. Rikitar masu amfani a halitta suka fito a cikin solenoid, wanda ake kira rikitar air-core. Don samun inductance, ana saka core mai ferromagnetic a cikin solenoid, wanda ya fara zama iron-core reactor
James
10/23/2025
35kV Distribusi Linin Yawan Ƙasa Dajiya Daɗi
35kV Distribusi Linin Yawan Ƙasa Dajiya Daɗi
Lambar Taurari: Kungiyar Yawan KuliLambar taurari suna kungiyar yawan kuli. A cikin zabe na gaba da darasi, an yi nasara lambar taurari (don inganta ko fitowa) da suka fi shiga, kamar yadda da suka fi sanya don masu taurari. Ba a nan bayan, an yi nasara kuli na gaba da darasi kan suka yi nasara a kan taurari, kuma an yi nasara kuli a jama'a masu sauki. A cikin kungiyoyi na taurari, ana iya faru abubuwa kamar mafi girma a cikin tsawon gaba, mafi girma (mai mu'amala), da kuma mafi girma a cikin ts
Encyclopedia
10/23/2025
Matsayin Yadda Ƙarƙashin MVDC Shaida? Faɗila, Dangantaka da Tashaya na Gaba
Matsayin Yadda Ƙarƙashin MVDC Shaida? Faɗila, Dangantaka da Tashaya na Gaba
Tattalin tsari na kwayoyin karamin kashi (MVDC) yana cikin tashar karamin kashi, wanda ake fadada don dole kungiyoyi na cikin AC na gaba-gaban a tushen kayan aiki. Ta karama kashi a kan DC da kwayoyin karamin kashi daga 1.5 kV zuwa 50 kV, ta haɗa muhimmin abubuwa na karamin kashi a kwayoyin takwas da dalilai na karamin kashi a kwayoyin ƙasa. A lokacin da take daɗe wannan tashar karamin kashi na kwayoyin takwas da kuma tushen karamin kashi masu zamani, MVDC yana faruwa a matsayin bincike mafi muh
Echo
10/23/2025
Daga Yana Farkon Duka na MVDC Ya Gane Zafi na Nau'in?
Daga Yana Farkon Duka na MVDC Ya Gane Zafi na Nau'in?
Bayanan da Kudin Farkon Tushen DC a MakarantunA lokacin da farko ta tushen DC yake, zan iya kategorizawa a matsayin farko na wurare, kadan na wurare, gurbin wurare ko kuma yaɗuwar insalolin. Farko na wurare ana kawo da farko na wurare mai zurfi da farko na wurare mai nuna. Farko na wurare mai zurfi zai iya haɓaka cewa ake yi ƙarin hanyoyi da yanayin zama a cikin wasu abubuwa, sannan farko na wurare mai nuna zai iya haɓaka cewa ba ake yi ƙarin hanyoyi (misali, yanayin zama ko yanayin kasa). Idan
Felix Spark
10/23/2025
Aika tambaya
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.