• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Mai Da Dacewa na Iya Kafa?

Encyclopedia
فیلڈ: Dakilin ƙasashen ilimi
0
China


Me kadan Wani Abin da Yawanci?


Takardun Wani Abin da Yawanci


Wani abin da yawanci na dandamai ita ce hanyar bayyana masu yawan da keke da kuma mafi karfi game da wata matsayin cikakken bayanin tarihin su.


Muhimman Tushen Wani Abin da Yawanci


A zama tushen wani abin da yawanci na dandamai na tushen da suka gudana da tarihi da ya fi inganta.


Za a iya duba masu shirya da kuma masu fadada rike da r inputs da m outputs.


Idan, r = u1, u2, u3 ……….. ur.


Da m = y1, y2 ……….. ym.


Daga baya za mu iya samun n state variables don in bayyana dandamai na tarihi, saboda haka n = x1, x2, ……….. xn.


Kuma za mu iya takarda input da output vectors kamar yadda ake bayyana a nan,


Transpose of input vectors,

 

Idan, T ita ce transpose of the matrix.


4ec21880208e50398e2147e2c94be95c.jpeg

 

Transpose of output vectors,

 

Idan, T ita ce transpose of the matrix.


Transpose of state vectors,

 

Idan, T ita ce transpose of the matrix.


Wasu waɗannan variables suna da take da wasu tushen da ake rubuta a nan kuma suna canza a kan wani abin da yawanci.


2f6c48f719835461d76258222a75c74a.jpeg


Bayanin Model na State Ta Hanyar Transfer Function


Decomposition : Ana ƙirƙira wannan a matsayin yanayin samun model na state daga transfer function. Idan kuna iya ƙirƙira transfer function ta hanyar uku hanyoyi:


  • Decomposition na ɗaya,

  • Decomposition na series ko cascade,

  • Decomposition na parallel.


A cikin duk waɗannan hanyoyi na ƙirƙiri, a gaba muna ƙirƙira transfer function ta zuwa tushen differential equations, wanda ake kira tushen dynamic equations. Ba da ƙirƙirar zuwa tushen differential equations, muna ƙirƙira inverse Laplace transform ta, sannan ba da ƙirƙirar zuwa tushen decomposition, muna iya ƙirƙira model. Muna iya ƙirƙira wani abu a model na state. Akwai wasu hanyoyi na model kamar electrical model, mechanical model, da sauransu.


Expression of Transfer Matrix in terms of A, B, C and D. We define transfer matrix as the Laplace transform of output to the Laplace transform of input.On writing the state equations again and taking the Laplace transform of both the state equation (assuming initial conditions equal to zero) we have

 

We can write the equation as


Where, I is an identity matrix


Now substituting the value of X(s) in the equation Y(s) and putting D = 0 (means is a null matrix) we have


Inverse of matrix can substitute by adj of matrix divided by the determinant of the matrix, now on rewriting the expression we have of


|sI-A| is also known as characteristic equation when equated to zero.

 

e6b9367897ab964505ee2e0d51ac6aef.jpeg

 

Concept of Eigen Values and Eigen Vectors


The roots of characteristic equation that we have described above are known as eigen values or eigen values of matrix A.Now there are some properties related to eigen values and these properties are written below-


  • Any square matrix A and its transpose At have the same eigen values.



  • Sum of eigen values of any matrix A is equal to the trace of the matrix A.



  • Product of the eigen values of any matrix A is equal to the determinant of the matrix A.



  • If we multiply a scalar quantity to matrix A then the eigen values are also get multiplied by the same value of scalar.



  • If we inverse the given matrix A then its eigen values are also get inverses.



  • If all the elements of the matrix are real then the eigen values corresponding to that matrix are either real or exists in complex conjugate pair.



Now there exists one eigen vector corresponding to one Eigen value, if it satisfy the following condition (ek × I – A)Pk = 0. Where, k = 1, 2, 3, ……..n.

 


State Transition Matrix and Zero State Response


We are here interested in deriving the expressions for the state transition matrix and zero state response. Again taking the state equations that we have derived above and taking their Laplace transformation we have,

 

Now on rewriting the above equation we have

 

d0ebabef77893dcbbf49dc9134298e1e.jpeg

 

Let [sI-A] -1 = θ(s) and taking the inverse Laplace of the above equation we have

 

The expression θ(t) is known as state transition matrix.


 

3ea0118a055da16d7af19dc530ebf4fe.jpeg

 

L-1.θ(t)BU(s) = zero state response.

 

Now let us discuss some of the properties of the state transition matrix.

 

  • If we substitute t = 0 in the above equation then we will get 1. Mathematically we can write θ(0) =1.



  • If we substitute t = -t in the θ(t) then we will get inverse of θ(t). Mathematically we can write θ(-t) = [θ(t)]-1.


  • We also another important property [θ(t)]n = θ(nt). 


Ba da kyau kuma kara mai rubutu!

Tambayar Da Yawanci

Kashe da Tattalin Kasa na Kirkiro Gida a Ƙarfin Kirkiro 10kV
Karakteristikai da Kwayoyin Tsohon Gaba na Fasal Akwai Wata1. Karakteristikai na Fasal Akwai WataSignaolin Alarami na Wasu:Bello na alarami ya kara, kuma lampan na bayani "Fasal Akwai Wata a [X] kV Bus Section [Y]" ta kafa. A cikin sistemai da ke amfani da Petersen coil (coil na paka wata) don kare gaba na neutral point, lampan na "Petersen Coil Operated" kuma ta kafa.Bayanin Voltmeter na Paka Insulation:Tushe na fasal akwai wata ta zama yawa (a lokacin da ke tsakanin paka mai yawa) ko ta daga z
01/30/2026
Gidamintar da take gudanar da shi a wurin karkashin 110kV~220kV na IEE-Business
Na gaba da hanyar kan zabe ta rike masu shirya na 110kV~220kV, yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti suka dace da muhimmanci, kuma yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti suke musamman. Kuma yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti ba suka fi yawa da tare da uku da zabe ta rike masu shirya na tsakiyar karamin sauti.Don sabbin abubuwa da kuma hanyoyin kimiyya, zabe ta rike masu shirya na 220kV da 110kV ya kamata
01/29/2026
Dausu Da Yadda Makarantu Sun Yi Amfani Da Dukkuka Karamin Gwanda Na Karamin Jiya Da Karamin Rokki?
Daga Yana Da Iya Mafi Masu Shiga Karamin Jiragen, Kwararren, Makarantun Dukai Da Kuma Makarantun Giwa?A cikin masu shiga karami, wasu kayan aiki kamar muhimmanci da kuma muhimmanci na noma, tushen bayyana, muhimmanci da kuma muhimmanci na tsakiyar, da kuma muhimmanci na tsakiyar suna bukatar shiga karami. A kan nan, zan iya fahimta daga baya ta hanyar yadda ake amfani da kwararren da kuma makarantun dukai a cikin masu shiga karami. Ba saboda haka, wannan kwararre ya taka rawa masu dalilai da kum
01/29/2026
HECI GCB for Generators – Fast SF₆ Circuit Breaker HECI GCB for Generators – Karamin Kirki na SF₆
1. Tasharrafu da Funtuka1.1 Ruhunin Kirkiyar Kirkiyar KuliyaKirkiyar Kirkiyar Kuliya (GCB) shi ne tushen kawo kawo da ake iya gudanar da ita wanda yake kan bayan kuliya da kirkiyars gudanar da abubuwan rayuwa. An fi sani da shi a matsayin muhimmanci na kuliya da grid ta masara. Funtukan da suka biyo sun hada da gudanar da abubuwan dole na kuliya da kuma gudanar da abubuwan rayuwar da aka yi a lokacin da ake haɗa da kuliya da kuma grid ta masara. Addinin da GCB ya yi ba shi da cikakken farko da k
01/06/2026
Aika tambaya
+86
Dauke kake saita fayil
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.