Final Value Theorem in Laplace Transform (Proof & Examples)

Electrical4u
03/29/2024

Final Value Theorem In Laplace Transform

In the solution of Networks, Transient, and Systems sometimes we may not be interested in finding out the entire function of time f(t) from it’s Laplace Transform F(s), which is available for the solution. It is very interesting to find that we can find the first value or last value of f(t) or it’s derivatives without having to find out the entire function f(t). We will be interested in finding out final values and it’s derivatives in this article.

For the sake of example:
If F(s) is given, we would like to know what is F(∞), Without knowing the function f(t), which is Inverse Laplace Transformation, at time t→ ∞. This can be done by using the property of Laplace Transform known as Final Value Theorem. Final value theorem and initial value theorem are together called the Limiting Theorems.

Definition of Final Value Theorem of Laplace Transform

If f(t) and f'(t) both are Laplace Transformable and sF(s) has no pole in jw axis and in the R.H.P. (Right half Plane) then,

Proof of Final Value Theorem of Laplace Transform
We know differentiation property of Laplace Transformation:

Note
Here the limit 0 is taken to take care of the impulses present at t = 0
Now we take limit as s → 0. Then e-st → 1 and the whole equation looks like


Examples of Final Value Theorem of Laplace Transform
Find the final values of the given F(s) without calculating explicitly f(t)

Answer


Answer

Note
See here Inverse Laplace Transform is difficult in this case. Still we can find the Final Value through the Theorem.

Answer
Note
In Example 1 and 2 we have checked the conditions too but it satisfies them all. So we refrain ourselves of showing explicitly. But here the sF(s) has a pole on the R.H.P as the denominator have a positive root.
So, here we can’t apply Final Value Theorem.

Answer
Note
In this example sF(s) has poles on jw axis. +2i and -2i specifically.
So, here we can’t apply Final Value Theorem as well.

Answer
Note


Points to remember:

  • For applying FVT we need to ensure that f(t) and f'(t) are transformable.

  • We need to ensure that the Final Value exists. Final value doesn’t exist in the following cases

If sF(s) has poles on the right side of s plane. [Example 3]
If sF(s) has conjugate poles on jw axis. [Example 4]
If sF(s) has pole on origin. [Example 5]

  • Then apply

In this example sF(s) has pole on the origin.
So here we can’t apply Final Value Theorem as well.
Final Trick
Just check that sF(s) is unbounded or not. If unbounded, then it is not fit for Final Value Theorem and the final value is simply infinite.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
What is a step voltage regulator?
What is a step voltage regulator?
Hey everyone, I'm Blue — an electrical engineer with over 20 years of experience, currently working at ABB. My career has mainly focused on circuit breaker design, transformer management, and providing power system solutions for various utility companies.Today, someone asked the question: "What is a step voltage regulator?" Let me explain it in simple but professional terms.So, a step voltage regulator is basically a device used in power distribution systems to keep the voltage stable. Think of
Master Electrician
07/11/2025
Classification of Electric Power Distribution Network Systems
Classification of Electric Power Distribution Network Systems
The typical electric power system network is categorized into three main components: generation, transmission, and distribution. Electric power is produced in power plants, which are often located far from load centers. As a result, transmission lines are employed to deliver power over long distances.To minimize transmission losses, high-voltage power is used in transmission lines, and the voltage is reduced at the load center. The distribution system then delivers this power to end-users.Types
Edwiin
06/05/2025
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Ground Wire in Overhead Transmission LinesThe ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has
Edwiin
06/04/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!