Amsa da kula kimiyyar jirgin ruwa yana bukata a matsayin cewa ya kamata a fahimta tsari mai yawa daga tsohon ruwa zuwa kudin ruwa a cikin tsarin. Don fahimtar ita ce, za a iya samun takardun vector da kuma gane aljebra vector da kuma diagram vector.
Akwai abubuwa masu magana da kuma tushen inganci. Wannan irin abubuwan da ake kira vector. Wannan shine hanyar a bayyana takefiyar vector a kalamu biyu. A cikin wannan bayanin, vector shi ne wani hanyar na musamman don in tabbatar da abubuwa masu magana da kuma tushen inganci. Idan muna cewa, hakkin 5 N, ba zan iya haɗa ma'anarsa. Ana buƙaci a cewa, wani hakki a nan 5 N, yana kan gefen, kan gefen, ko a nan ƙarin tushen. Saboda haka, ana buƙaci a cewa, vector ya kamata a tabbatar da magana da tushen. Tushen da ake tabbatar da su ake amfani da tushen da ake cutar da axis mai ban sha'awa.
A cikin wannan diagram vector, vector OB yana da magana ta |Z| a kan tushen θ da axis mai ban sha'awa ox. Wannan zai iya bincike a biyu a tushen da suka duba, cewa suna cewa
Hanyar na musamman don in tabbatar da vector
Tana so ku fada game da aljebra vector. Don in yi aiki a kasar, vector ya kamata a rubuta a hanyar aljebri. A cikin diagram vector, vector Z yana da yawan X da Y.
A nan, j yana nuna cewa component Y yana kan tushen da ke duba da component X. Axis x a cikin diagram vector yana nufin 'real' ko 'in-phase' axis, kuma axis y vertical yana nufin 'imaginary' ko 'quadrature' axis. Symbol 'j' wanda yake da quadrature component Y, zai iya amincewa a hukuma vector anticlockwise through 90o. Idan vector ya kamata a hukuma anticlockwise through 180o maka operator j ya kamata a yi aiki biyu, kuma saboda vector ya faru tushensa maka j.j ko j2 = − 1
Wanda yana nufin, j = √ | − 1 |
Saboda haka, an samu cewa abubuwan da ake kira vector zai iya a rubuta a cikin irin hanyoyi biyu, a nan
A cikin diagram vector da aka baka a wannan safhen. Magana ta vector Z yana da
Daga waɗannan labaran, muna samu cewa,
An sanya waɗannan ukuwar X da Y, a cikin tsari complex ta Z, muna samu cewa,
Magana ta wannan bayanin yana nufin tsari trigonometrical ta vector. Duk da haka, muna samu cewa, cosθ da sinθ zai iya a rubuta a cikin tsari exponential kamar haka
Idan muna sanya waɗannan ukuwar exponential ta sinθ da cosθ a cikin bayanin Z = |Z|(cosθ + jsinθ) muna samu cewa,
⇒ Z = |Z|ejθ
Wannan shine tsari exponential ta vector.
Saboda haka, daga waɗannan bayanan aljebra vector da diagrams vector, muna samu cewa, abubuwan da ake kira vector zai iya a rubuta a cikin tsari biyu da suka baka a nan
Source: Electrical4u.
Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.