
Shaida Nyquist (ko da kuma Diagram Nyquist) yana nuna shaida na tashin rawa wanda ake amfani da ita a kula takamakawa da prosesin alama. Ake amfani da shaidar Nyquist don bincike zafiya ta takamakawa mai sabbin bayanin adadin rawa. A cikin koordinatin Cartesian, kafin da dukkan da na transfer function ya zama a x-axis, kuma kafin da mulkin da na transfer function ya zama a y-axis.
An gudanar da adadin rawa a matsayin paramita, wanda ya haɗa da shaida da ake tsara a kan adadin rawa. Zan iya bayyana shaidar Nyquist daidai a cikin koordinatin polar, inda zan iya bayyana gain da na transfer function a kan radial coordinate, kuma fase da na transfer function a kan angular coordinate.
Binciken zafiya ta takamakawa mai sabbin bayanin adadin rawa tana nuna a kan in tabbatar da abubuwan da suka samu wurin bayanan s-plane.
Idan wurare suka zaune a hagu na biyu na s-plane, ana ce takamakawa yana da zafiya. Ana iya tabbatar da zafiyan da na takamakawa a cikin yanayi a fadada adadin rawa – kamar shaidar Nyquist, Nichols plot, da Bode plot.
Nyquist stability criterion an amfani da ita don tabbatar da in wurare suka zaune a hagu na biyu na s-plane.
Don in fahimtar shaidar Nyquist, muna buƙata da wasu terminologiyoyi. Tabbacin da ke cikin complex plane ana kiran contour.
Nyquist contour yana nuna contour da ke ciki a s-plane wanda ya kula hagu na biyu na s-plane duka.
Don in kula hagu na biyu na s-plane, ana kira semicircle path mai inganci da diameter a jω axis da center a origin. Radius da semicircle ya zama Nyquist Encirclement.
Ana ce point ya kula contour idan ana samun shi a cikin contour.
Inganci wanda ake amfani da ita don in tabbatar da point a s-plane zuwa point a F(s) plane ana kiran mapping and F(s) ana kiran mapping function.
Za a iya gargajiya shaidar Nyquist a cikin yanayin:
Rukun 1 – Tambayata poles da G(s) H(s) a jω axis sama da wannan da a origin.
Rukun 2 – Zabi Nyquist contour daidai – a) Kula hagu na biyu na s-plane tare da semicircle da radius R da R yana ci gaba zuwa infinity.
Rukun 3 – Bayyana segments da ke cikin contour a kan Nyquist path
Rukun 4 – Gargajiya segment da segment tare da substitution da equation da ke cikin segment a kan mapping function. Amma, za a iya sketsh polar plots da ke cikin segment.
Rukun 5 – Mapping da ke cikin segments suna zo ne mirror images da mapping da ke cikin path da +ve imaginary axis.
Rukun 6 – Semicircular path wanda ya kula hagu na biyu na s plane yana ci gaba zuwa point a G(s) H(s) plane.
Rukun 7- Haɗa da mapping da ke cikin segments masu sauƙi don in tabbatar da Nyquist diagram daidai.
Rukun 8 – Tabbar matafiya da ke cikin encirclements a kan (-1, 0) da kuma tabbatar da zafiya a kan N = Z – P

itace Open loop transfer function (O.L.T.F)

itace Closed loop transfer function (C.L.T.F)
N(s) = 0 itace open loop zero and D(s) itace open loop pole
Daga ma'anar zafiya, ba za a iya samun closed loop poles a hagu na biyu na s-plane. Characteristics equation 1 + G(s) H(s) = 0 itace closed-loop poles .
Idan 1 + G(s) H(s) = 0, don haka q(s) ya kamata a ci zero.
Saboda haka, daga ma'anar zafiya, zeroes da ke cikin q(s) ba za a iya samun a hagu na biyu na s-plane.
Don in tabbatar da zafiya, an kula hagu na biyu na s-plane duka. Ana kira semicircle wanda ya kula abubuwan da ke cikin hagu na biyu na s-plane tare da radius da semicircle R yana ci gaba zuwa infinity. [R → ∞].
Rukun na farko don in fahimtar amfani da Nyquist criterion a cikin tabbatar da zafiya na takamakawar control systems shine mapping daga s-plane zuwa G(s) H(s) – plane.
s an kiran independent complex variable and value da G(s) H(s) yake da dependent variable wanda ake sa a complex plane da ke kira G(s) H(s) – plane.
Saboda haka, har point da ke cikin s-plane, akwai corresponding point a G(s) H(s) – plane. A cikin ingancin mapping, independent variable s an yi variya a kan specified path a s-plane, and corresponding points a G(s)H(s) plane an haɗa. Wannan ya kula ingancin mapping daga s-plane zuwa G(s)H(s) – plane.
Nyquist stability criterion ya ce N = Z – P. Inda, N itace total no. da ke cikin encirclement a kan origin, P itace total no. da ke cikin poles and Z itace total no. da ke cikin zeroes.
Case 1: N = 0 (ba a ci encirclement), don haka Z = P = 0 and Z = P
Idan N = 0, P ya kamata a ci zero, saboda haka takamakawa yana da zafiya.
Case 2: N > 0 (clockwise encirclement), don haka P = 0, Z ≠0 and Z > P
A cikin case 2, takamakawa ba da zafiya.
Case 3: N < 0 (counter-clockwise encirclement), don haka Z = 0, P ≠0 and P > Z
Takamakawa yana da zafiya.
Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.