• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Rêza Spêka | Polinom Hurwitz | Fonksiyonên Rastî Pozitîf

Electrical4u
Electrical4u
qalab: بەشی بنەڕەتی برق
0
China

Çavdarê Network Synthesis

Theory of Network Synthesis

Network Functions

Theory of network synthesis involves the synthesis of networks made up of both active components (like resistors) and passive components (like inductors and capacitors).

Let’s start with the basics: what is a network function? In the frequency domain, network functions are defined as the quotient obtained by dividing the phasor corresponding to the circuit output by the phasor corresponding to the circuit input.

In simple words, network functions are the ratio of output phasor to the input phasor when phasors exist in the frequency domain. The general form of network functions is given below:

Now with the help of the above general network function, we can describe the necessary conditions for the stability of all the network functions. There are three mains necessary conditions for the stability of these network functions and they are written below:

  1. The degree of the numerator of F(s) should not exceed the degree of denominator by more than unity. In other words (m – n) should be less than or equal to one.

  2. F(s) should not have multiple poles on the jω-axis or the y-axis of the pole-zero plot.

  3. F(s) should not have poles on the right half of the s-plane.

Hurwitz Polynomial

If above all the stability criteria are fulfilled (i.e. we have stable network function) then the denominator of the F(s) is called the Hurwitz polynomial.

Where, Q(s) is a Hurwitz polynomial.

Properties of Hurwitz Polynomials

There are five important properties of Hurwitz polynomials and they are written below:

  1. For all real values of s value of the function P(s) should be real.

  2. The real part of every root should be either zero or negative.

  3. Let us consider the coefficients of denominator of F(s) is bn, b(n-1), b(n-2). . . . b0. Here it should be noted that bn, b(n-1), b0 must be positive and bn and b(n-1) should not be equal to zero simultaneously.

  4. The continued fraction expansion of even to the odd part of the Hurwitz polynomial should give all positive quotient terms, if even degree is higher or the continued fraction expansion of odd to the even part of the Hurwitz polynomial should give all positive quotient terms, if odd degree is higher.

  5. In case of purely even or purely odd polynomial, we must do continued fraction with the of derivative of the purely even or purely odd polynomial and rest of the procedure is same as mentioned in the point number (4).

From the above discussion we conclude one very simple result, If all the coefficients of the quadratic polynomial are real and positive then that quadratic polynomial is always a Hurwitz polynomial.

Positive Real Functions

Any function which is in the form of F(s) will be called as a positive real function if fulfill these four important conditions:

  1. F(s) should give real values for all real values of s.

  2. P(s) should be a Hurwitz polynomial.

  3. If we substitute s = jω then on separating the real and imaginary parts, the real part of the function should be greater than or equal to zero, means it should be non negative. This most important condition and we will frequently use this condition in order to find out the whether the function is positive real or not.

  4. On substituting s = jω, F(s) should posses simple poles and the residues should be real and positive.

Properties of Positive Real Function

There are four very important properties of positive real functions and they are written below:

  1. Both the numerator and denominator of F(s) should be Hurwitz polynomials.

  2. The degree of the numerator of F(s) should not exceed the degree of denominator by more than unity. In other words (m-n) should be less than or equal to one.

  3. If F(s) is positive real function then reciprocal of F(s) should also be positive real function.

  4. Remember the summation of two or more positive real function is also a positive real function but in case of the difference it may or may not be positive real function.

Following are the four necessary but not the sufficient conditions for the functions to be a positive real function and they are written below:

  1. The coefficient of the polynomial must be real and positive.

  2. The degree of the numerator of F(s) should not exceed the degree of denominator by more than unity. In other words (m – n) should be less than or equal to one.

  3. Poles and zeros on the imaginary axis should be simple.

  4. Let us consider the coefficients of denominator of F(s) is bn, b(n-1), b(n-2). . . . b0.Here it should be noted that bn, b(n-1), b0 must be positive and bn and b(n-1) should not be equal to zero simultaneously.

Now there two necessary and sufficient conditions for the functions to be a positive real function and they are written below:

Bexşişek bidin û nuşkarê wê bikevin!​
Pêşniyariyek
Cîhanên Xalatên Pirçûnê ya THD ji bo Sistemanên Nîrgiriyê
Cîhanên Xalatên Pirçûnê ya THD ji bo Sistemanên Nîrgiriyê
Kesalahan Toleransi Distorsi Harmonis Total (THD): Analisis Komprehensif Berdasarkan Skenario Aplikasi, Akurasi Peralatan, dan Standar IndustriRentang kesalahan yang dapat diterima untuk Distorsi Harmonis Total (THD) harus dievaluasi berdasarkan konteks aplikasi spesifik, akurasi peralatan pengukuran, dan standar industri yang berlaku. Berikut adalah analisis mendalam dari indikator kinerja utama dalam sistem tenaga, peralatan industri, dan aplikasi pengukuran umum.1. Standar Kesalahan Harmonis
Edwiin
11/03/2025
Kîfê û Teknîk Vakûm SF6-yan di Yekîtiya Mîna Heybetan Modern de Bîneve Dabike
Kîfê û Teknîk Vakûm SF6-yan di Yekîtiya Mîna Heybetan Modern de Bîneve Dabike
Yekîneyên sînorê ya hîlber (RMUs) di destpêkirina dawî de hatîn bikar anîn, wekheviya zevî yên nesbendan yên parastî yên malî, çarçoveyên bînistin, binîyên karkirdî, raya, û yeta.Di destpêka nesbendan de, RMU têne 12 kV bişindînê ya navendî wergerandin, ku di navendekirina transestaran de ber 380 V bişindînê ya bicîh hatine sererast kirin. Cihazê ya switçê ya bişindînê ya bicîh enerjiya elektrîkê li ser rêzikên bikarhêzên din jêbirin. Ji bo transestarê ya 1250 kVA li ser komîna nesbendan, yekîne
James
11/03/2025
چی دەبێت THD؟ چۆن پلەی ئەمپێری و کامکاری بەدەست دێت
چی دەبێت THD؟ چۆن پلەی ئەمپێری و کامکاری بەدەست دێت
Endamê taybetînîn dîrokî taybetînîn, stabîlî û bexwestinîyên cîhazên berzandînî hînên ên pirî wan re. Bi pêşketina teknolojîya elektrônîkê taybetînîn, karûbarên nelinek da ku werdigirîna piçavên harmonîkî di cîhazên berzandînî de hatiye çendkirin.Pêşnûsana THDTotal Harmonic Distortion (THD) pêşnûsandin da ku rêzikî rms (root mean square) ya hemî komponentên harmonîk bi rêzikî rms ya komponenta fundamentalî di navenda signalî periodîk de. Ev çendekî belasî ye, yew ji sedde yên din. THD yekemîn we
Encyclopedia
11/01/2025
چیە دەکاتە بارەکەی ڕوونەویست لە سیستەمە نەرخەوانەدا؟
چیە دەکاتە بارەکەی ڕوونەویست لە سیستەمە نەرخەوانەدا؟
پارێزەری بۆ دابەشکردنی نەگەڕاوەی ئەنژامی: تەکنەلۆجیای سەرەکی بۆ کۆントڕۆڵکردنی سیستەمی توانپارێزەری بۆ دابەشکردنی نەگەڕاوەی ئەنژامی یەکێکە لە تەکنەلۆجیاکانی کارکردن و کۆنتڕۆڵکردنی سیستەمی توان، پێشتر بەکاردێت بۆ چارەسەرکردنی نەگەڕاوەی توانی دوورنەکراوەکان پاش هەڵکەوتەکانی پارێزەر، خراپیەکانی منشا توان، یان جۆرە دیکە لە گەڕاندا. پێکهاتەکەی شێوازی دواتر دەبێت:١. ڕاستگەیی و پێشبینیسەرەتا، مۆنیتۆرکردنی ڕاستەوخۆی سیستەمی توان دەکرێت بۆ دابەشکردنی دەربارەی زانیاری کارکردن، پێشەوەی پارێزەر و ڕوونەکردنی ت
Echo
10/30/2025
Pêşnîyar bişînin​
Daxistin
IEE-Business Zêdekirin Bîzînin Wekandin
Bi karanîna sepanê IEE-Business, li her der û her dem amûr bibînin, çareseriyan bistînin, bi pîsporan re têkiliyê ava bikin, û beşdarî hevkariya pîşesaziyê bibin — ev hemû ji pêşveçûna projeyên hêz û karsaziya we re piştgirîyeke tev e.​