• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Wakar Taima: Me ke shi? (Tushen da Yadda ake Gano a MATLAB)

Electrical4u
Electrical4u
فیلڈ: Karkashin Kuliya da Dukkana
0
China

Madda da Aikin Da Duk

Aikin da dukan wani na'ura mai yawa shine lokacin da muhimmanci ya shiga da zama da daraja ta bayanar da ake ba. Ana sanya da Ts. Aikin da duka tana da kusa da gaba-gaban da ake bukata da lokaci ga jirgin da ake bukata. Tana da lokacin da ake bukatar da aikin da duk zuwa darajan da ake bukata da tsarin da ake bukata.

Tsari da ake bukata shine yanayin da ake bukatar da aikin da duk za su. Amsa, tsarin da ake bukata suna 2% ko 5%.

Aikin da dukan na'urori mai yawa na'ura ta biyu ana nuna haka a cikin hoto na wannan.



aikin da duka

Aikin da Duk



Tsarin Aikin da Duk

Aikin da duka tana da kusa da adadin sauti da amsa da ake bukata. Tsarin da ake bukata wa aikin da duka shine;


  

\[ T_S = \frac{ln(tolerance \, fraction)}{damping \, ratio \times Natural \, frequency} \]


Amsa da ake bukata na'ura ta biyu an nuna haka;


  

\[ C(t) = 1 - \left( \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \right) sin(\omega_d t + \theta) \]


Zan iya kungiyar da biyu;

 

  

\[ exponential \, component = \left( \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \right) \]



  

\[ sinusoidal \, component = sin(\omega_d t + \theta) \]


Don samun lokacin da yake, muna bukata da zan iya kungiya masu hankali da ba wani ba, domin ya kawo wani babban mutum da ke kan wani abu. Kuma yadda ake kawo cikin abubuwa ta shi ne ita ce.

\[ Tolerance \, fraction = \frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \]



  

\[ t = T_S \]



  

\[ Tolerance \, fraction \times \sqrt{1-\zeta^2} = e^{-\zeta \omega_n T_S} \]



  

\[ ln \left( Tolerance \, fraction \times \sqrt{1-\zeta^2} \right) = -\zeta \omega_n T_S \]



  

\[ T_S = - \frac{ ln \left( Tolerance \, fraction \times \sqrt{1-\zeta^2} \right)}{\zeta \omega_n} \]

Yadda A Kula Waktar Da Zama Cikin Tsarin

Don kula waktar da zama, za mu iya duba sistem na farko da tashin yadda ake yi.


  

\[ \frac{C(s)}{R(s)} = \frac{\frac{1}{T}}{s+\frac{1}{T}}} \]


Don tashin yadda ake yi,


  

\[ R(s) = \frac{1}{s} \]


Saboda haka,


  

\[ C(s) = \frac{\frac{1}{T}}{s(s+\frac{1}{T})}} \]



  

\[ C(s) = \frac{A_1}{s} + \frac{A_2}{s+\frac{1}{T}} \]


A nan, kula a taka lalacewar A1 da A2.

\[ \frac{\frac{1}{T}}{s(s+\frac{1}{T})}} = \frac{A_1(s+\frac{1}{T}) + A_2s}{s(s+\frac{1}{T})} \]



  

\[ \frac{1}{T} = A_1 (s+\frac{1}{T}) + A_2 s \]


Tsanu s = 0;


  

\[ \frac{1}{T} = A_1( 0 + \frac{1}{T}) + A_2 (0) \]



  

\[ \frac{1}{T} = A_1 \frac{1}{T} \]



  

\[ A_1 = 1 \]


Tsanu s = -1/T;


  

\[ \frac{1}{T} = A_1 (0) + A_2 (\frac{-1}{T}) \]



  

\[ \frac{1}{T} = -A_2 \frac{1}{T} \]



  

\[ A_2 = -1 \]



  

\[C(s) = \frac{1}{s} - \frac{1}{s+\frac{1}{T}} \]



  

\[ C(t) = L^{-1} C(s) \]

\[ C(t) = 1 - e^{\frac{-t}{T}} \]



  

\[ e^{\frac{-t}{T}} = 1 - C(t) \]

Don samun ƙarfi 2%, 1-C(t) = 0.02;


  

\[ e^{\frac{-t_s}{T}} = 0.02 \]



  

\[ \frac{-t_s}{T} = ln(0.02) \]



  

\[ \frac{-t_s}{T} = -3.9 \]



  

\[ t_s = 3.9T \]



  

\[ t_s \approx 4T \]


Tana da taka wani abu na tsawon kungiyar da ke nuna lokacin da za a yi aiki a cikin kungiyar da ke da rike mai yawa.

Don kungiyar na biyu, zan iya duba wannan tana da:


  

\[ C(t) = 1 - \frac{e^{- \zeta \omega_n t}}{\sqrt{1-\zeta^2}} sin(\omega_d t+\phi) \]


A cikin wannan tana, tana da muhimmanci don samun balobi da ya shafi lokacin da za a yi aiki.


  

\[ C(t) = 1 - \frac{e^{- \zeta \omega_n t}}{\sqrt{1-\zeta^2}} \]



  

\[ \frac{e^{- \zeta \omega_n t}}{\sqrt{1-\zeta^2}} = 1 - C(t) \]


A nan, zaɓe ƙoƙari na ƙasa ɗaya. Saboda haka, 1 – C(t) = 0.02;


  

\[ \frac{e^{- \zeta \omega_n t}}{\sqrt{1-\zeta^2}} = 0.02 \]

Yadda ƙarfin ƙasa (ξ) ke shafi ne tana da yawa daga wata zuwa wata biyu. A nan, muna ƙara da ƙasar biyu mai ƙasa ta ƙarin. Kuma ƙarfin ƙasa (ξ) tana cikin 0 da 1.

Saboda haka, karamin ƙarfin ƙasa (ξ) tana cikin 0 da 1, karamin tsawon ƙarfin ƙasa (ξ) tana da yawan ƙarin ɗaya. Don in iya yi amfani, za mu iya fi ƙarfin ƙasa (ξ) ba ɗaya.


  

\[ e^{- \zeta \omega_n t_s} = 0.02 \]



  

\[ - \zeta \omega_n t_s = ln(0.02) \]



  

\[ - \zeta \omega_n t_s = -3.9 \]



  

\[ t_s = \frac{3.9}{\zeta \omega_n} \]



  

\[ t_s \approx \frac{4}{\zeta \omega_n} \]


An harsuna zai iya amfani da shi kawai don bandin daji 2% da kuma na'urar da ta'addan tsawon biyu.

Duk da cewa, don bandin daji 5%; 1 – C(t) = 0.05;


  

\[ e^(- \zeta \omega_n t_s) = 0.05 \]



  

\[ - \zeta \omega_n t_s = ln(0.05) \]



  

\[ - \zeta \omega_n t_s = -3 \]



  

\[ t_s \approx \frac{3}{\zeta \omega_n} \]


A nan hanyar da system ta biyu, a baya da samun lokacin da yake cikin kadan, muna iya kula tsarin damping.


Na'urar da Daukake

Dabbobi na Yawanci (ξ)

Wakar Kafa (TS)

Yadda yawancin dabbobi ya koma

0<ξ<1

  

\[ T_S = \frac{4}{\zeta \omega_n }\]

Babu yawanci

ξ = 0

  

\[ T_S = \infty \]

Yadda yawancin dabbobi ya haɗa

ξ = 1

  

\[ T_S = \frac{6}{\omega_n} \]

Yadda yawancin dabbobi ya fiye

ξ > 1

Yana nufin kan poli mai yawa


Wakar Zama na Tsawon Locus da Root

Zama na tsawo zai iya tafi kwa haka na harkokin locus da root. Zama na tsawo ta yi amfani da tsariyar damping da frequency mai kyau.

Wasu daban-daban za su iya samun da harkokin locus da root. Sannan muna iya samun zama na tsawo.

Yana da wani misali.


  

\[ G(s) = \frac{K}{(s+1)(s+2)(s+3)} \]


Da Overshoot = 20%


  

\[ damping \, ratio \, \zeta = \frac{-ln(\%OS/100)}{\sqrt{\pi^2 + ln^2(\%OS/100)}} \]



  

\[ \zeta = \frac{-ln(0.2)}{ \sqrt{\pi^2 + ln^2(0.2)}} \]



  

\[ \zeta = \frac{1.609}{ \sqrt{\pi^2 + 2.59}} \]



  

\[ \zeta = \frac{1.609}{3.529} \]



  

\[ \zeta = 0.4559 \]


Daga diagram mai root locus, zaka iya samun kungiyoyi masu muhimmanci;


  

\[ P = -0.866 \pm j 1.691  = \sigma \pm j \omega_d \]



  

\[ \omega_d = 1.691 \]



  

\[ \omega_d = \omega_n \sqrt{1-\zeta^2} \]



  

\[ 1.691 = \omega_n \sqrt{1-0.207} \]



  

\[ \omega_n = \frac{1.691}{\sqrt{0.793}} \]



  

\[ \omega_n = \frac{1.691}{0.890} \]



  

\[ \omega_n = 1.9 \, rad/sec \]


A nan, tana da ranar ξ da ωn,


  

\[ settling \, time \, t_s = \frac{4}{\zeta \omega_m} \]



  

\[ t_s = \frac{4}{0.455 \times 1.9} \]



  

\[ t_s = 4.62 sec \]


Diagramma na root locus ita ce da MATLAB. Don haka amfani da 'yan “sisotool”. A kan, zaka iya hada kawo wata bayanin percentage overshoot ta 20%. Kuma samun dominant poles da kyau.

Tambayar da na biyu yana nuna diagramma na root locus daga MATLAB.



misali na root locus

Misali na Root Locus



Za a iya samun lokacin da aka tabbatar da shi a kan MATLAB. A cikin haka, ake kawo bayanan tushen daidai na system ta haka.



settling time a kan MATLAB

Lokacin da aka tabbatar da shi a kan MATLAB



Yadda a Kaɗau Lokacin da aka Tabbatar Da Shi

Lokacin da aka tabbatar da shi shine lokaci da aka bukata don samun abubuwa. Don haka, wajen kontrolar da yawa, ya kamata a kaɗau lokacin da aka tabbatar da shi.

Kaɗau lokacin da aka tabbatar da shi ba shi ne aiki mai zurfi. Ana buƙata a yi controller don kaɗau lokacin da aka tabbatar da shi.

Sannan, akwai uku na controllers; proportional (P), Integral (I), derivative (D). Daga cikin hukumar da suka haɗa, za a iya samun abubuwan da muke so kuɗi game da system.

Gain na controllers (KP, KI, KD) ana zaba daidai a cikin abubuwan da muke so kuɗi game da system.

Zaɓi gain proportional KP, zai yi laifi a lokacin da aka tabbatar da shi. Zama gain integral KI, lokacin da aka tabbatar da shi zai ci. Sannan, zama gain derivative KD, lokacin da aka tabbatar da shi zai ci.

Saboda haka, zafayi na kammalun yana kanza don kawo rike wani lokaci. Idan an zaɓe abubuwa na kammalun ta PID, zai iya haɗa da muhimmanci da dama kamar lokacinin kawo rike, tsara, da kuma Tashin kasarwar.

Yadda a Koyar Lokacinin Rike a MATLAB

A MATLAB, lokacinin rike zai iya samun da aikace-aikacen step. Ba na fahimta tushen misali.


  

\[ G(s) = \frac{25}{s^2 + 6s + 25} \]


Kadan, muna koyar lokacinin rike da aikace-aikacen. Don haka, kara wannan transfer function da transfer function na gaba-gabata na system na biyu.


  

\[ G(s) = \frac{\omega_n^2}{s^2 + 2 \zeta \omega_n s + \omega_n^2} \]


Saboda haka,


  

\[ 2 \zeta \omega_n = 6 \]



  

\[ \zeta \omega_n = 3 \]



  

\[ settling \, time \, (t_s) = \frac{4}{\zeta \omega_n} \]



  

\[ t_s = \frac{4}{3} \]



  

\[ t_s = 1.33 sec \]


Wannan irin da ta ake kula shi ne kuma ake amfani da hukuma wajen kula shi. Amma a MATLAB, muna samun irin daidai. Saboda haka, wannan irin zai iya kasancewa wasu daga baya bayan duk biyu.

Sau, don kula irin daidai a MATLAB, muna amfani da hukumomin step.

clc; clear all; close all;
num = [0 0 25];
den = [1 6 25];
t = 0:0.005:5;
sys = tf(num,den);
F = step(sys,t);
H = stepinfo(F,t)

step(sys,t);

Output:

H =

RiseTime: 0.3708
SettlingTime: 1.1886
SettlingMin: 0.9071
SettlingMax: 1.0948
Overshoot: 9.4780
Undershoot: 0
Peak: 1.0948
PeakTime: 0.7850

Kuma za a samu grafikin takalmi kamar yadda aka nuna a cikin wannan siffofin.



settling time calculation in matlab

Kula irin daidai a MATLAB



A MATLAB, bayanin cikakken kula irin daidai ya shafi 2%. Zan iya canza wannan a cikin grafiki don cikakken kula irin daidai masu wahala. Don haka, duba zuwa grafiki > properties > options > “show settling time within ___ %”.



property editor matlab

Ediṭa na Maimakon MATLAB



Wani hikima da za a iya samun lokacin da yake shiga ita ce ta kula da tsabta. Idan an sani, don faduwar 2%, zan iya cewa taron da aka nuna yana kan 0.98 zuwa 1.02.

clc; clear all; close all;

num = [0 0 25];
den = [1 6 25];

t = 0:0.005:5;

[y,x,t] = step(num,den,t);

S = 1001;
while y(S)>0.98 & y(S)<1.02;
    S=S-1;
end
settling_time = (S-1)*0.005

Tsunafi:

settling_time = 1.1886

Bayanin: A yi amfani da asalin, babban lura mai gaskiya ya zama da ake baka, idandaza ba tare da kasa za a iya bayar don ake cire.

Ba da kyau kuma kara mai rubutu!
Tambayar Da Yawanci
Misali da amsa da kungiyoyi don amfani da AC load banks?
Misali da amsa da kungiyoyi don amfani da AC load banks?
Banka mai tsarki na AC suna da zakaici masu iya amfani da shi don kawo alamun abin da ke faruwa a duniya, kuma ana amfani da su da yawa a cikin sassan karamin kwarewa, sassan tattalin arziki, sassan ingantaccen nemo, da sauransu. Don in ba da dalilai da damar mutane da abubuwan da za su amfani, yawancin bayanin hankali da kuma addinin kudin ya kamata a yi:Zaɓe banka mai tsarki na AC da yawa: Zaba banka mai tsarki na AC wanda yana ci gaba da bukatar da aka bukata, kafin haske da yake da muhimmanc
Echo
11/06/2025
Me kawo wani abu a takaice da aka fi sani da shirya Type K thermocouple?
【注意事项】
- Ana bukata a yi amfani da karkashin Type K thermocouple cikin sauki.
- Zaka iya gina aiki a wurin da ke yawa cewa ba za a yi nasara a kula da karkashin.
- Zaka iya duba karkashin a kan wurin da ke yawan jiki na faren degri.
- Ba za a yi nasara a kunna karkashin a kan wurin da ke da mutane ko abubuwa masu yawa.
- Zaka iya kula da karkashin a kan wurin da ke da yanayi domin a yi aiki daidai.
- Zaka iya kula da karkashin a kan wurin da ke da yanayi domin a yi aiki daidai.
Me kawo wani abu a takaice da aka fi sani da shirya Type K thermocouple? 【注意事项】 - Ana bukata a yi amfani da karkashin Type K thermocouple cikin sauki. - Zaka iya gina aiki a wurin da ke yawa cewa ba za a yi nasara a kula da karkashin. - Zaka iya duba karkashin a kan wurin da ke yawan jiki na faren degri. - Ba za a yi nasara a kunna karkashin a kan wurin da ke da mutane ko abubuwa masu yawa. - Zaka iya kula da karkashin a kan wurin da ke da yanayi domin a yi aiki daidai. - Zaka iya kula da karkashin a kan wurin da ke da yanayi domin a yi aiki daidai.
Muhimmanci da yadda ake koyar Kukurin K (Type K) na gaba da tsari a kan jin dadin tashin lamarin da kuma cin bayanai. A nan ne bayanin muhimman addinin koyar Kukurin K (Type K), an samun daga masu ilimi mai zurfi:1. Zabi da Bincike Zabbar da irin kukuri daidai: Zabba kukuri daidai ba tafiya, siffofin abu, da kuma zaiyataccen tashin lami a kan yanayi. Kukurin K (Type K) yana iya amfani a tafiyoyi daga -200°C zuwa 1372°C, kuma ana iya amfani a matsayin manyan yanayi da abubuwa. Bincika nuna kukuri
James
11/06/2025
Sababin da Karamin Lalle da Kudurwa a Gidajen Yanka na Taili
Karamin lalle da kudurwa a gidajen yanka na taili yana cikka sababon da ya kamata a tuntubi. Wadannan sababu sun haɗa da kawo karfi, kuma ana iya koyar da su don kare masu lalle da kudurwa. A nan, zan bayyana wasu sababin da muhimmanci da zaɓuɓɓuka da ke kula da karamin lalle da kudurwa a gidajen yanka na taili, kuma zaɓuɓɓukan da za su iya koyar da wadannan sababu.

1 Sababu: Kwallonsa na Tsakiyar Gas
Duk da cewa tsakiyar gas na gidajen yanka na taili na iya ƙunshi gas ta hanyar zama shi ne, amma idan kwallonsa ya faru a tsakiyar, za a iya karkashinsa da karamin lalle. Daga baka, kwallonsa na tsakiyar gas na iya karkashinsa da karamin lalle da kudurwa.

Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin tsakiyar gas da kuma samun gine-gine na tsakiya a kan gidaje.

2 Sababu: Kwallonsa na Zuba
Idan kwallonsa na zuba ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na zuba na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara.

Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin zuba da kuma samun gine-gine na zuba a kan gidaje.

3 Sababu: Kwallonsa na Kusurwa
Idan kwallonsa na kusurwa ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na kusurwa na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara.

Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin kusurwa da kuma samun gine-gine na kusurwa a kan gidaje.

4 Sababu: Kwallonsa na Sauransu
Idan kwallonsa na sauransu ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na sauransu na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara.

Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin sauransu da kuma samun gine-gine na sauransu a kan gidaje.

5 Sababu: Kwallonsa na Fasahar Kusurwa
Idan kwallonsa na fasahar kusurwa ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na fasahar kusurwa na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara.

Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin fasahar kusurwa da kuma samun gine-gine na fasahar kusurwa a kan gidaje.

Wannan bayanai na nuna wasu sababin da muhimmanci da zaɓuɓɓukan da za su iya koyar da karamin lalle da kudurwa a gidajen yanka na taili. Ana bukatar matsalolin da kuma samun gine-gine a kan gidaje don koyar da wadannan sababu.
Sababin da Karamin Lalle da Kudurwa a Gidajen Yanka na Taili Karamin lalle da kudurwa a gidajen yanka na taili yana cikka sababon da ya kamata a tuntubi. Wadannan sababu sun haɗa da kawo karfi, kuma ana iya koyar da su don kare masu lalle da kudurwa. A nan, zan bayyana wasu sababin da muhimmanci da zaɓuɓɓuka da ke kula da karamin lalle da kudurwa a gidajen yanka na taili, kuma zaɓuɓɓukan da za su iya koyar da wadannan sababu. 1 Sababu: Kwallonsa na Tsakiyar Gas Duk da cewa tsakiyar gas na gidajen yanka na taili na iya ƙunshi gas ta hanyar zama shi ne, amma idan kwallonsa ya faru a tsakiyar, za a iya karkashinsa da karamin lalle. Daga baka, kwallonsa na tsakiyar gas na iya karkashinsa da karamin lalle da kudurwa. Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin tsakiyar gas da kuma samun gine-gine na tsakiya a kan gidaje. 2 Sababu: Kwallonsa na Zuba Idan kwallonsa na zuba ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na zuba na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara. Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin zuba da kuma samun gine-gine na zuba a kan gidaje. 3 Sababu: Kwallonsa na Kusurwa Idan kwallonsa na kusurwa ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na kusurwa na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara. Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin kusurwa da kuma samun gine-gine na kusurwa a kan gidaje. 4 Sababu: Kwallonsa na Sauransu Idan kwallonsa na sauransu ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na sauransu na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara. Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin sauransu da kuma samun gine-gine na sauransu a kan gidaje. 5 Sababu: Kwallonsa na Fasahar Kusurwa Idan kwallonsa na fasahar kusurwa ta faru a gidajen yanka na taili, za a iya karkashinsa da karamin lalle. Kwallonsa na fasahar kusurwa na iya karkashinsa da karamin lalle da kudurwa, domin kwallonsa na iya koyar da babban gyara. Zaɓuɓɓuka: Don koyar da wannan, ya kamata a gina ingantaccen tsarin fasahar kusurwa da kuma samun gine-gine na fasahar kusurwa a kan gidaje. Wannan bayanai na nuna wasu sababin da muhimmanci da zaɓuɓɓukan da za su iya koyar da karamin lalle da kudurwa a gidajen yanka na taili. Ana bukatar matsalolin da kuma samun gine-gine a kan gidaje don koyar da wadannan sababu.
Sababin Daɗi da Yaɓaƙar da Yawancin Aiki a Cikin Oil Circuit Breakers Idan adadin shaida a cikin oil circuit breaker yana fi kadan, zaɓuwar shaida wanda ya gudanar da mafi girman yana zama da ma'ana. A kan ƙarin mai sarrafa, shaidan ya ƙoƙari da ya rage wasu gasoyin da ke da shaida. Gasoyin da suka rage sun haɗa a wurare da tafkin hagu, suka dole da hawa ta rage da suka bude da yawan jiki. Idan adadin shaida a cikin tanki yana fi yawa, gasoyin da suka rage ba su na samun ingantaccen fagen sama,
Felix Spark
11/06/2025
Istifararsa Dukkantar THD Don Tarihin Kirkiro na Sisinta Tsakiya
Istifararsa Dukkantar THD Don Tarihin Kirkiro na Sisinta Tsakiya
Toleransi Eror dari Distorsi Harmonik Total (THD): Analisis Komprehensif Berdasarkan Skenario Aplikasi, Ketepatan Alat, dan Standar IndustriRentang toleransi eror untuk Distorsi Harmonik Total (THD) harus dievaluasi berdasarkan konteks aplikasi spesifik, ketepatan alat pengukuran, dan standar industri yang berlaku. Berikut ini adalah analisis mendalam dari indikator kinerja utama dalam sistem tenaga, peralatan industri, dan aplikasi pengukuran umum.1. Standar Eror Harmonik dalam Sistem Tenaga1.1
Edwiin
11/03/2025
Aika tambaya
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.