• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Muhimman Tsari: Me Ke Faru? (Takaitaccen da Fassara)

Electrical4u
فیلڈ: Karkashin Kuliya da Dukkana
0
China

Me kowane da zaɓuɓɓuka-tarayen Fresnel?

Zaɓuɓɓuka-tarayen Fresnel (ko kuma mafi yawan adadin cewa zaɓuɓɓukan Fresnel) suna nufin dukkan da yaɗuwa mai tsarki da mai zama a kan shirya mai tsarki na mai gaba da mai tsarki zuwa shirya mai tsarki na wani abu. Wannan dukkan shi ne mai girma, saboda haka, ana bayyana babban daɗi da kuma fuskantar daɗi a kan ma'aikata.

Zaɓuɓɓuka-tarayen Fresnel (zaɓuɓɓukan Fresnel) sun bayyana mai tsarki da mai zama na tsohuwar mutanen da suka faruwa a kan gabashin biyu na muhimmanci. An sanya zaɓuɓɓukan-tarayen da suka faruwa a kan Augustin-Jean Fresnel. Ya shahara da shi ne wanda ya fi son in fahimta cewa tsohuwar mutanen da suka faruwa shi ne tsohuwar tsakiyar da suka faruwa.

Idan tsohuwar mutanen da suka faruwa ya faruwa a kan gabas na wani abu mai faruwa, zai tsarki da zama a kan darajar da ta faruwa. Yadda mai tsarki ya faruwa an ba da shi a kan “Matsayin Zaɓuɓɓuka Mai Tsarki”.

Akwai yanayin da aka sani da ita a cikin ranar. Zai iya samun shi a kan gabashin mutanen da suka faruwa ko kuma gabashin mutanen da suka faruwa mai tsarki. Yanayin da aka sani da ita yana cikin tsohuwar mutanen da suka faruwa mai tsarki. Idan tsohuwar mutanen da suka faruwa ya faruwa a kan tsohuwar mutanen da suka faruwa mai tsarki, tsohuwar mutanen da suka faruwa zai tsarki a kan darajar da ta faruwa.

Yanayin da aka sani da ita yana cikin tsohuwar mutanen da suka faruwa. Idan ka yi kokari a cikin tsohuwar mutanen da suka faruwa, zai iya samun misalai da dama. Wannan yanayin da aka sani da ita yana da damar da ita a kan darajar da ta faruwa.

Darajar da ta faruwa shi ne darajinsu a kan lura da gabas na abu da ka doke. Tabbacin da aka bayyana a nan tana nuna yanayin da aka sani da ita a kan darajar da ta faruwa a kan tsohuwar mutanen da suka faruwa mai tsarki.

Polarizashion S da P

Gabas na da tsawon da ke faruwa da kuma tsawon da ke faruwa na tsohuwar mutanen da suka faruwa suna nufin gabas na faruwar da ta faruwa ko kuma gabas na faruwar da ta faruwa.

Gabas na faruwar da ta faruwa yana da damar da ita a kan zamantakewa mai tsarki na tsohuwar mutanen da suka faruwa. Polarizashion suna nufin alamar da tsohuwar tsakiyar da suka faruwa wanda ya nuna gabas na faruwar da ta faruwa.

Akawo biyu na polarizashion:

  • Polarizashion S

  • Polarizashion P

Idan polarizashion na tsohuwar mutanen da suka faruwa yana faruwa a kan gabas na faruwar da ta faruwa, wannan polarizashion suna nufin Polarizashion S. Kalmar 'S' yana nufin kalmar jermance "senkrecht" wanda ya nufin faruwa a kan gabas. Polarizashion S tana da sunan Transverse Electric (TE) ko kuma TE.

Idan da shi'arar zabi na tsohuwa ya bambanta da karamin hanyar zaɓuwa ko yana cikin hanyar zaɓuwa. Karamin hanyar zaɓuwa yana nufin P-Polarization. S-polarization tana lura da Transverse Magnetic (TM).

Rukunin da ake bi a nan ya nuna cewa zabi na tsohuwa ya ci gaba da ci gaba a kan S-polarization da P-Polarization.

Fresnel Equations Complex Index of Refraction

Fresnel Equations suna nufin mafi inganci wadanda suka duba tsari da fasa. Fresnel Equations suna nufin tsarin amfani don karamin hanyar zaɓuwar electromagnetic field complex amplitude wanda suka duba fasa saboda abin da suka yi.

Wadannan equations suna nufin tasiri na electromagnetic field da suka duba babban hankali. Amfani don karamin hanyar zaɓuwar complex amplitude suna nufin r da t.

Reflection coefficient ‘r’ yana nufin duka electric field complex amplitude na zabi na ci gaba zuwa zabi na tsohuwa. Da kuma reflection coefficient ‘t’ yana nufin duka electric field complex amplitude na zabi na ci gaba zuwa zabi na tsohuwa.

Kamar yadda ake nuna a rukunin da ake bi, muna sani cewa angle of incidence yana nufin θi, ci gaban angle of θr, da ci gaban angle of θt.

Ni yana nufin refractive indices na medium na zabi na tsohuwa da Nt yana nufin refractive indices na medium na zabi na ci gaba.

Saboda haka, akwai waɗannan four Fresnel Equations; two equations for reflection coefficient ‘r’ wanda suke nufin (rp and rs) da two equations for reflection coefficient ‘t’ wanda suke nufin (tp and ts).

Fresnel Equations Derivation

Za a iya sani cewa zabi na tsohuwa ya ci gaba kamar yadda ake nuna a rukunin da ake bi. A nan, muna bayyana amsa don S-Polarization.

Don S-Polarization, parallel component E da perpendicular component B yana bambanta a kan boundary between two media.

Saboda haka daga takamakon da yake, zan iya rubuta kalmomi don E-field da B-field,

(1) \begin{equation*}E_i + E_r = E_t\end{equation*}


\begin{equation*}B_i \cos(\theta_i) - B_r \cos(\theta_r) = B_t \cos(\theta_t)\end{equation*}

Na amfani da abin da ke bayarwa a kan B da E don in bace B. 

\[ B = \frac{nE}{c_0} \]

Da kuma daga tarihin gajarta, 

\[ \theta_i = \theta_r \]


Taka wannan balo zuwa eq-2,

(3) 

\begin{equation*} \frac{n_i E_i}{c_0} \cos(\theta_i) - \frac{n_i E_r}{c_0} \cos(\theta_i)  = \frac{n_t E_t}{c_0} \cos(\theta_t)  \end{equation*}


(4) 

\begin{equation*}n_i \cos(\theta_i) [ E_i - E_r ] = n_t E_t \cos(\theta_t)  \end{equation*}


(5) 

\begin{equation*}n_i \cos(\theta_i) [ E_i - E_r ] = n_t [ E_i + E_r ] \cos(\theta_t)  \end{equation*}


(6) 

\begin{equation*}n_i E_i \cos(\theta_i) - n_i E_r \cos(\theta_i) = n_t E_i \cos(\theta_t) + n_t E_r \cos(\theta_t)\end{equation*}


(7) 

\begin{equation*}n_i E_i \cos(\theta_i) -  n_t E_i \cos(\theta_t) =  n_t E_r \cos(\theta_t) +  n_i E_r \cos(\theta_i) \end{equation*}


(8)
 

\begin{equation*}E_i [ n_i \cos(\theta_i) -  n_t \cos(\theta_t) ] =   E_r  [n_t \cos(\theta_t) +  n_i \cos(\theta_i)]\end{equation*}


(9

\begin{equation*}r_s = \frac{E_r}{E_i} = \frac{n_i \cos(\theta_i) -  n_t \cos(\theta_t)}{n_t \cos(\theta_t) +  n_i \cos(\theta_i)}\end{equation*}

Daga tsohon koyar daɗi t, daga eq-1 da eq-4,

(10

\begin{equation*}n_i \cos(\theta_i) [ E_i - (E_t - E_i) ] = n_t E_t \cos(\theta_t)  \end{equation*}


(11) 

\begin{equation*}n_i \cos(\theta_i) [ 2E_i - E_t ] = n_t E_t \cos(\theta_t)  \end{equation*}


(12) 

\begin{equation*} 2E_i n_i \cos(\theta_i) - E_t n_i \cos(\theta_i) = n_t E_t \cos(\theta_t)  \end{equation*}


(13)
 

\begin{equation*} 2E_i n_i \cos(\theta_i) = E_t n_i \cos(\theta_i) + n_t E_t \cos(\theta_t)  \end{equation*}


(14

\begin{equation*}t_s = \frac{E_t}{E_i} = \frac{2 n_i \cos(\theta_i)}{ n_i \cos(\theta_i) + n_t \cos(\theta_t)} \end{equation*}


Wadannan su duka shi ne tsarin Furmaluwar Fresnel don foton da suka kula (S-Polarization).

Tana, zaka iya haɗa furmaluwar da ke foton da ba ta kula (P-Polarization).

Don S-Polarization, furmaluwar E-field da B-field shine;

(15) 

\begin{equation*}E_i \cos(\theta_i) + E_r \cos(\theta_i) = E_t \cos(\theta_t)\end{equation*}


(16) 

\begin{equation*}B_i - B_r = B_t\end{equation*}


A nan zaka wani alaka da ke bayarwa a kan B da E don kawo B. 

 

\[ B = \frac{nE}{c_0} \]


(17) 

\begin{equation*}n_i E_i - n_i E_r = n_t E_t\end{equation*}


  

\[  n_i [E_i - E_r] = n_t E_t \]


 
 

\[ \frac{n_i}{n_t} [E_i - E_r] = E_t \]


Aiki wannan ma'aikata a cikin eq-15,

(18) 

\begin{equation*}E_i \cos(\theta_i) + E_r \cos(\theta_i) =  \frac{n_i}{n_t} [E_i - E_r] \cos(\theta_t)\end{equation*}


(19) 

\begin{equation*}n_t [E_i \cos(\theta_i) + E_r \cos(\theta_i)] =  {n_i} [E_i - E_r] \cos(\theta_t)\end{equation*}


(20) 

\begin{equation*}n_t E_i \cos(\theta_i) + n_t E_r \cos(\theta_i) = n_i E_i \cos(\theta_t) -  n_i E_r \cos(\theta_t)\end{equation*}


(21) 

\begin{equation*} n_t E_i \cos(\theta_i) - n_i E_i \cos(\theta_t) = -n_t E_r \cos(\theta_i) - n_i E_r \cos(\theta_t) \end{equation*}


(22) 

\begin{equation*}E_i [n_t \cos(\theta_i) - n_i \cos(\theta_t)] = -E_r [n_t \cos(\theta_i)  + n_i \cos(\theta_t)]     \end{equation*}


(23) 

\begin{equation*}E_i [ n_i \cos(\theta_t) - n_t \cos(\theta_i)] = E_r [n_t \cos(\theta_i)  + n_i \cos(\theta_t)]     \end{equation*}


(24) 

\begin{equation*}r_p = \frac{E_r}{E_i} = \frac{ n_i \cos(\theta_t) - n_t \cos(\theta_i)}{n_t \cos(\theta_i)  + n_i \cos(\theta_t)}\end{equation*}


A halin da tushen kofin tushen t, daga eq-17

  

\[ n_i E_i - n_t E_t = n_i E_r \]     \[ E_i -\frac{n_t}{n_i} E_t = E_r \]


Tambayi wannan darajar a cikin eq-15

(25) 

\begin{equation*}E_i \cos(\theta_i) +  [ E_i -\frac{n_t}{n_i} E_t]  \cos(\theta_i) = E_t \cos(\theta_t)\end{equation*}

(26) 

\begin{equation*}E_i \cos(\theta_i) + E_i \cos(\theta_i) - \frac{n_t}{n_i} E_t \cos(\theta_i) = E_t \cos(\theta_t) \end{equation*}


(27) 

\begin{equation*}2 E_i \cos(\theta_i) = \frac{n_t}{n_i} E_t \cos(\theta_i) + E_t \cos(\theta_t) \end{equation*}


(28) 

\begin{equation*}2 E_i n_i \cos(\theta_i) = n_t E_t \cos(\theta_i) +  {n_i} E_t \cos(\theta_t) \end{equation*}


(29) 

\begin{equation*}2 E_i n_i \cos(\theta_i) = E_t [n_t \cos(\theta_i) +  {n_i} \cos(\theta_t)] \end{equation*}


(30

\begin{equation*} t_p = \frac{E_t}{E_i} = \frac{2 n_i \cos(\theta_i)}{ n_t \cos(\theta_i) +  {n_i} \cos(\theta_t)}  \end{equation*}


Amsa da dukkan cikin hukumai Fresnel,  

\[ r_s = \frac{n_i \cos(\theta_i) -  n_t \cos(\theta_t)}{n_t \cos(\theta_t) +  n_i \cos(\theta_i)} \]

  

\[ t_s = \frac{2 n_i \cos(\theta_i)}{ n_i \cos(\theta_i) + n_t \cos(\theta_t)} \]


  

\[ r_p = \frac{ n_i \cos(\theta_t) - n_t \cos(\theta_i)}{n_t \cos(\theta_i)  + n_i \cos(\theta_t)} \]


  

\[ t_p = \frac{2 n_i \cos(\theta_i)}{ n_t \cos(\theta_i) +  {n_i} \cos(\theta_t)} \]

Bayanin da aka rubuta: Aikatau wani, babu kaɗaƙi, wato da zai fi karin shari, idana aka ɗaukan kaɗaƙi kana so ka ɓace.

Ba da kyau kuma kara mai rubutu!

Tambayar Da Yawanci

Misali na abubuwa da za suka shafi ido masu harkokin karamin sune?
Fahimta da GaskiyaAbubuwa masu shirya sun yi amfani da teknologi na shirya don samun hankali akan yankin da kuma abubuwan da suka faru, za ta saki da wanda yake tafi ko zama ba a kan. Wannan babban irin shirya ya ba matakin da gaskiya, tare da rarrabe da dace da shiga riyarwar sama uku ko yankunan da ba a tsaye. Yana saki da kyau a kan, taimaka wajen shiga ko karin abubuwan da suke faru.Kasancewarsa da Ingantaccen ZaneAbubuwa masu shirya suna zama bai a lokacin da ba a kan, wanda yake iya taimak
10/30/2024
Me kuke so kuɗi a kan kathodi mai yau da kathodi mai yanki a tafin shiga?
A harsuna da dama da ke kalmomi cathode mai sanyi da cathode mai yauwa a takaitaccen rarrabbin lalace masu sauri suna cewa:Prinsipi na tsafta Cathode Mai Sanyi: Rarrabbi cathode mai sanyi suka shirya elektronon tun daga tsafta mai sanyi, wanda suke zama da gadi da za su iya haɗa da cathode don tabbatar da tsafta. Karamin karkashin cathode ya kasance da muhimman abubuwa ne, kuma ya ba da karamin karkashin da ya fi yawa, saboda haka cathode ta fi yawa da kyau. Cathode Mai Yauwa: Rarrabbi cathode m
10/30/2024
Misali na LED na ƙarfin kasa suna da?
Mafiya na LED LightsIdan LED lights suna da fa'idodi kamar tashin aiki, tsawon shugaban wani, da kuma ziyartar al'adu, suka da mafiya kadan. Wannan ne abubuwan da za a iya tabbatar da su a kan LED lights:1. Kyautar Karamin Samun Farko Kyautar: Kyautar samun farko na LED lights yana da kyautar da ya fi yawa da kyautar samun farko na tsohon bultu (kamar incandescent ko fluorescent). Idan akwai lokacin, LED lights zai iya taimakawa a gina nafin aiki da kuma tashin shugaban wani saboda kyautar aiki
10/29/2024
An samu da wani abubuwa a takaice da zabe masu shan alaomasu?
Hukumomi Don Wani Aiki na Kula Tasha SolarAiki na kula tasha dukkan abubuwa na sistemin tasha solar yana da muhimmanci. Kula daidai ya ba shi ya tabbatar da sistemin ya yi aiki da turanci. Hukuma hukuma masu muhimmanci su ne za a iya dogara wajen kula tasha dukkan abubuwa na tasha solar:1. Turancin Da Duniya1.1 Fadada KuliyaKafin Yadda Ka Yi: Duba cewa duk ma'adin kuliya na sistemin tasha solar suna fadawa don samun hadin kuliya.1.2 Yi Amfani Da Adadin Da Su Fi KwalbaAdadin: Yi amfani da adadin
10/26/2024
Aika tambaya
+86
Dauke kake saita fayil
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.