
T parametri so definirani kot parametri prenosne črte ali ABCD parametri. V dvovratni omrežji je vrat-1 razgledano kot pošiljališče in vrat-2 kot sprejemališče. V spodnjem shemi omrežja predstavljata terminali vrata-1 vhod (pošiljališče). Podobno predstavljata terminali vrata-2 izhod (sprejemališče).

Za zgornje dvovratno omrežje so enačbe T parametrov;
Kjer;
VS = napetost na pošiljališku strani napetost
IS = tok na pošiljališku strani tok
VR = napetost na sprejemniški strani
IR = tok na sprejemniški strani
Ti parametri se uporabljajo za matematično modeliranje prenosne črte. Parametra A in D sta brez enot. Enota parametra B in C je ohm in mho, zlasti.
Za določitev vrednosti T-parametrov moramo odpreti in zaprti konico sprejemne strani. Ko je sprejemna stran odprta, je tok na sprejemni strani IR enak nič. Če to vrednost vstavimo v enačbe, dobimo vrednosti parametrov A in C.

Iz enačbe 1;
Iz enačbe-2;
Ko je prijemni konec kračan, je napetost na prijemnih terminalih VR enaka nič. S tem vrednostjo v enačbi lahko dobimo vrednosti parametrov B in D.

Iz enačbe-1:
Iz enačbe-2;
Predpostavljajmo, da je med izhodnim in vhodnim koncem povezana impedanca, kot je prikazano na spodnji sliki. Poiščite T-parametre dane mreže.

Tukaj je tok na izhodu enak toku na vhodu.
Nato uporabimo zakon o kirchoffovih napetostih (KVL) za mrežo,
Primerjajte enačbo-1 in 4;
Primerjajte enačbo-2 in 3;
Prenosne linije so razvrščene glede na dolžino linije kot;
Kratka prenosna linija
Srednje dolga prenosna linija
Dolga prenosna linija
Najdimo zdaj T-parametre za vse vrste prenosnih linij.
Presežnica z dolžino manj kot 80 km in napetostjo manj kot 20 kV se smatra kratkim prenosnim vodnikom. Zaradi kratke dolžine in nižje napetosti se kapacitivnost vodnika zanemari.
Zato pri modeliranju kratkega prenosnega vodnika upoštevamo samo upor in indukcijo. Grafični prikaz kratkega prenosnega vodnika je prikazan na spodnji sliki.

Kjer,
IR = Tok na sprejemni strani
VR = Napetost na sprejemni strani
Z = Naložna impedanca
IS = Tok na oddajni strani
VS = Napetost na oddajni strani
R = Upor vodnika
L = Induktivnost vodnika
Ko tok teče skozi prenosni vodnik, se pojavi padec IR na uporu vodnika in padec IXL na induktivni reaktivnosti.
Iz zgornje mreže sledi, da je tok na oddajni strani enak toku na sprejemni strani.
Zdaj primerjajte te enačbe z enačbami T-parametrov (enačba 1 in 2). In dobimo vrednosti parametrov A, B, C in D za krajško prenosno linijo.
Prenosna linija dolžine 80 km do 240 km in napetostne ravni 20 kV do 100 kV je razvrščena kot srednja prenosna linija.
V primeru srednje prenosne linije ne moremo zanemariti kapacitance. Pri modeliranju srednje prenosne linije moramo upoštevati kapacitanco.
Glede na postavitev kapacitance so srednje prenosne linije razdeljene na tri metode:
Metoda končnega kondenzatorja
Nominalna T metoda
Nominalna π metoda
V tej metodi se predpostavlja, da je kapacitivnost vodila skupinska na koncu prenosnega vodila. Grafična predstavitev metode končnega kondenzatorja je prikazana na spodnji sliki.

Kjer;
IC = tok kondenzatorja = YVR
Iz zgornje slike sledi,
S pomočjo KVL lahko zapišemo:
Sedaj primerjajte enačbi-5 in 6 s enačbami T parametrov;
Pri tej metodi je kapacitivna vrednost črte postavljena na sredino prenosne črte. Grafični prikaz nominalne T metode je prikazan na spodnji sliki.

Kjer:
IC = tok kondenzatorja = YVC
VC = napetost kondenzatorja
Iz KCL;
Sedaj pa,
Sedaj primerjajmo enačbi-7 in 8 z enačbami T parametrov in dobimo,
V tem postopku je kapacitivnost prenosne črte razdeljena na polovici. Ena polovica je postavljena na pošiljališki konec, druga polovica pa na sprejemni konec. Grafična predstavitev nominalnega π metoda je prikazana na spodnji sliki.

Iz zgornje slike lahko zapišemo:
Sedaj,
Vstavite vrednost VS v to enačbo,
S primerjavo enačb-9 in 10 z enačbami T parametrov dobimo:
Dolga prenosna linija je modelirana kot distribuirana omrežja. Ne more biti predpostavljena kot zbirna omrežja. Distribuirani model dolge prenosne linije je prikazan na spodnji sliki.

Dolžina linije je X km. Za analizo prenosne linije upoštevamo majhen del (dx) linije. To je prikazano na spodnjem prikazu.

Zdx = serijski upor
Ydx = šuntov upor
Napetost se poveča s povečevanjem dolžine. Torej, naraščanje napetosti je;
Podobno je tok skozi element enak;
Diferencirane zgornjih enačb;
Splošna rešitev zgornje enačbe je;
Zdaj odvajajmo to enačbo glede na X,
Najprej moramo najti konstanti K1 in K2;
Za to predpostavimo;
Če vstavimo te vrednosti v zgornji enačbi;
Torej,
Kjer,
ZC = karakteristični upor
ɣ = konstanta širjenja
Primerjajte te enačbe z enačbami T-parametrov;
Druge parametre lahko izpeljemo iz enačb T parametrov. Za to moramo najti nabor enačb drugih parametrov, izraženih s pomočjo T parametrov.
Oglejmo si posplošeno dvolinijsko omrežje, prikazano na spodnji sliki.
Na tem diagramu je smer toka na oddajnem koncu obrnjena. Zato upoštevamo nekaj sprememb v enačbah T parametrov.
Enačbe T parametrov so;
Naslednji niz enačb predstavlja Z parametre.
Naslednje bomo izrazili enačbe parametrov Z v smislu parametrov T.
Sedaj primerjajte enačbo-14 z enačbo-15
Sedaj,
Primerjajte enačbo 13 z enačbo 16;
Skupina enačb za parametre Y je;
Iz enačbe-12;
To vrednost vstavite v enačbo 11;
Primerjajte to enačbo s enačbo-17;
Iz enačbe-11;
Primerjajte to enačbo z enačbo-18;
Nabor enačb za H parametre je;
Iz enačbe-12;
Primerjajte to enačbo z enačbo-22;
Izjava: Spoštuje original, dobre članke so vredne delitve, v primeru kršitve avtorskih pravic se obrnite za brisanje.