Teorema superpozîsyonê yek prinsîp bingehînî ye di endamîya elektrîkî de û dît çavkaniyek sisteman linear li ser her inputê da ku dikare wek hejmaran bi taybetmendiyên inputs individual hatine were were. Di wê demê de, çavkanî sisteman linearka ji bo derbarandina inputs ê wek hejmaran bi taybetmendiyên outputs ê da ku hewce bike her input individual.
Teorema superpozîsyonê dît:
“Di her şebexa linearka bilateral bi çend sources de, response (voltage û current) di her element de wek hejmaran bi taybetmendiyên hemî responses ê da ku hatine were were ji bo her source bêtir werin. Lîsazan divê sources din yên din ji şebexê ve were rakirin.”

Superpozîsyon ji pêkhatên Latinê ve hatiye were:
Super – Li ser
Position – Cih
Dîtinî, teorema superpozîsyon dibe:
y(t) = ∑[y_i(t)]
ji roya:
y(t) output yê sisteman e
y_i(t) output yê sisteman e ji bo ith input
∑ nişan dide hejmaran y_i(t) values
Teorema superpozîsyon li ser her sisteman linearker apply dibe, ku sisteman yek e ku prinsîpê superpozîsyonê peyda dikin. Sisteman linearker yek e ku output yê wê direktan proporsional be input û response yê sisteman ji bo derbarandina inputs ê wek hejmaran bi taybetmendiyên responses ê da ku hewce bike her input individual.
Teorema superpozîsyon yek amûrê zorî ye ji bo analizkirina û designkirina sisteman linearkan. În engineers an jî bikarhibînin ji bo simplifikirina sisteman complexan bi vegerîna wan ji bo komponentan yê sadeke hatine were were û lêgerîna teorema. Teorema bi serfirazî li ser analiza şebexên elektrik, sisteman mekanîk, û cûrayên din yê sistemanan da ku behavior linearkan hene.
Step-1: Identify a number of network-accessible independent sources.
Step-2: Select a single source and delete all others. If a source is dependent on the network, it cannot be eliminated. It remains unchanged for the duration of the calculation.
If you have determined that all potential energy sources are optimal, you do not need to consider internal resistance. And directly short-circuit the source of voltage and the source of current. However, if internal resistance of sources is specified, internal resistance must be replaced.
Step-3: Now, just one independent energy source is present in a circuit. It is necessary to discover a solution using a single energy source in the circuit.
Step-4: Repeat steps 2 and 3 for all available energy sources on the network. If there are three independent sources, these steps must be performed three times. And each time users receive a valuable response.
Step-5: Now, combine all responses acquired from individual sources using algebraic addition. And will receive the final response value for a specific network element. If it is need to find a response for other elements, users must repeat these procedures for each element.
It is utilized in the conversion of any circuit to its Norton or Thevenin equivalent. The theorem applies to
Linear [time-varying (or) time-invariant] networks composed of independent sources,
Linear dependent sources,
Linear passive elements (resistors, inductors, & capacitors), and
Linear transformers.
To implement the superposition theorem, the network must meet the following conditions.
Linear components must be employed in the circuit. It indicates that the current flow in resistors is proportional to the voltage, whereas the flux linkage in inductors is proportional to the current flow. Resistor, inductor, and capacitor are hence linear elements. However, diodes and transistors are not linear elements.
The components of the circuit must be bilateral elements. This indicates that the size of the current is independent of the polarity of the energy source.
The superposition theorem allows us to determine the current passing through an element, the voltage drop of the resistance, and the node voltage. However, we cannot locate the power lost by the element.
Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.