X’da huwa it-Transmission Line ta’ Lunġi?
Definizzjoni tal-Transmission Line ta’ Lunġi
It-Transmission Line ta’ lunġi hija definita bħala transmission line ikbar minn 250 km (150 miles), li tħtieġ approċċ differenti tal-modeling.

It-Transmission Line ta’ lunġi hija definita bħala transmission line bl-inqas ta’ 250 km (150 miles). Differenti mill-transmission lines qisien u medja, it-transmission lines ta’ lunġi irridu model ħafif bi parametri distributi lungi l-kuljans. Dan jiġbil li l-iktar komplikati l-iktar li nikkalkulaw l-parametri ABCD tal-transmission line, imma jippermetti li nistgħu nifsnu l-volttagġ u l-korrent fl-punt quddiem jidher fuq il-linja.
Fil-transmission line ta’ lunġi, il-kostanti tal-linja huma distributi unifikatament lungi l-kuljans tal-linja. Dan għalhekk li l-lunghezz effettiva tal-kitba hi twil aktar milli kienet għal modelli preċedenti (transmission lines ta’ lunġi u medja) u hekk mhux possibli li nagħmelu l-approssimazzjonijiet segwi:
Li nignuraw l-admittanza shunt tal-netwerk, kif jkun fil-model tas-silġ transmission line.Li nkunsidraw l-impedanġa u l-admittanza tal-kitba koncentrati f'punt, kif kienet l-għalhu fl-model tas-silġ transmission line medju.
L-impedanġa u l-admittanza tal-kitba għandhom tkunu distributi lungi l-kuljans tal-linja. Dan jiġbil li l-iktar riguri l-iktar. Għal modeling akkurat ta’ dawn il-parametri, nużaw id-diagram tal-kitba tal-transmission line ta’ lunġi.

Hawn, linja tal-lunghezz l > 250km tħaddit ma’ volttagġ u kurrent tal-aħħar VS u IS rispettivament, waqt li VR u IR huma l-valuri tal-volttagġ u kurrent ottenuti mill-aħħar. Ipppreżentaw element ta’ infinitament żgħir Δx fuq distanza x mill-aħħar kif tara t-tajmela fejn.
V = valur tal-volttagġ qabel ma jidħol lil element Δx.
I = valur tal-kurrent qabel ma jidħol lil element Δx.
V+ΔV = volttagġ jilġu lil element Δx.
I+ΔI = kurrent jilġu lil element Δx.
ΔV = drop tal-volttagġ fuq element Δx.
zΔx = impedanġa serji tal-element Δx
yΔx = admittanza shunt tal-element Δx
Fejn, Z = z l u Y = y l huma l-valuri tal-impedanġa u l-admittanza totali tal-transmission line ta’ lunġi.
Għalhekk, id-drop tal-volttagġ fuq l-element infinitament żgħir Δx huwa magħmul minn
Issa biex niddeterminaw l-kurrent ΔI, naqsmu KCL għal nodu A.
Skont li l-term ΔV yΔx huwa prodott ta’ żewġ valuri infinitament żgħar, nistgħu nignurawlu għall-iktar siegħeb tal-kalkol.
Għalhekk, nistgħu niktibu

Issa derivata anke l-iktar parti ta’ eq (1) wr.t x,
Issa sustituendo mill-equation (2)
Il-soluzzjoni tal-equation differenzjali ta’ darbata tnejn huwa magħmul minn.
Derivata equation (4) wr.to x.
Issa mibgħud equation (1) mal-equation (5)

Issa biex nprosegwu, definixxi l-impedanġa karatteristika Zc u l-kostanti propagazzjoni δ tal-transmission line ta’ lunġi kif huwa
Allura l-equations tal-volttagġ u kurrent jistgħu jiġu espresi bħala funzjon tal-impedanġa karatteristika u l-kostanti propagazzjoni fl-
Issa fl-x=0, V= VR u I= Ir. Sustituendo dawn il-kondizzjonijiet lejn equation (7) u (8) rispettivament.

Soluzzjoni equation (9) u (10),Nigħtu l-valuri ta’ A1 u A2 bħal,

Issa applikabb l-kundizzjoni estrema oħra fl-x = l, għalna V = VS u I = IS.Issa biex ndeterminaw VS u IS sustituhim x bl-u mettu l-valuri ta’ A1 uA2 f’equation (7) u (8) nigħtu

Bi operatori trigonometriki u esponenziali nafu
Għalhekk, equation (11) u (12) jistgħu jiġu riscritti bħal
Allura, minn l-equation ġenerali tal-parametri tal-kitba, nirriġu l-parametri ABCD tal-transmission line ta’ lunġi bħal,
