• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Tempus Responsionis Systematis Controlis Secundi Ordinis (Exemplum Elaboratum)

Electrical4u
Electrical4u
Campus: Electrica Elementaria
0
China

Tempus Responsus Systematis Controlis Secundi Ordinis

Ordo systematis controlis determinatur per potentiam ‘s’ in denominatore functionis transferentiae eius.

Si potentia s in denominatore functionis transferentiae systematis controlis est 2, tunc systema dicitur systema controlis secundi ordinis.

Expressio generalis functionis transferentiae systematis controlis secundi ordinis data est ut

Hic, ζ et ωn sunt ratio amortizandi et frequens naturalis systematis, respectiviter (de his duobus terminis discemus in detalius ulterius).

Rearranging the formula above, the output of the system is given as

If we consider a unit step function as the input of the system, then the output equation of the system can be rewritten as



Taking the inverse Laplace transform of above equation, we get

The above expression of output c(t) can be rewritten as

The error of the signal of the response is given by e(t) = r (t) – c(t), and hence.

From the above expression it is clear that the error of the signal is of oscillation type with exponentially decaying magnitude when ζ < 1.

The frequency of the oscillation is ωd and the time constant of exponential decay is 1/ζωn.

Where, ωd, is referred as damped frequency of the oscillation, and ωn is natural frequency of the oscillation. The term ζ affects that damping a lot and hence this term is called damping ratio.

There will be different behaviors of output signal, depending upon the value of damping ratio and let us examine each of the cases, one by one.

Using this as a base, we will analyze the time response of a second order control system. We’ll do this by analyzing the unit step response of a second order control system in the frequency domain, before converting it into the time domain.

Tempus Responsus Systematis Controlis Secundi Ordinis

When damping ratio is zero, we can rewrite the above expression of output signal as

As in this expression, there is no exponential term, the time response of the control system is un-damped for unit step input function with zero damping ratio.

Page 137. Figure 6.4.3. of the book automatic control system by Hasan.

Now let us examine the case when damping ratio is unity.



In this expression of output signal, there is no oscillating part in subjective unit step function. And hence this time response of second-order control system is referred as critically damped.

Now we will examine the time response of a second order control system subjective unit step input function when damping ratio is greater than one.

Taking inverse Laplace transform of both sides of the above equation we get,


In the above expression, there are two time constants.

For the value of ζ comparatively much greater than one, the effect of faster time constant on the time response can be neglected and the time response expression finally comes as

Figure 6.4.5 of the page 139 of the book automatic control system by Hasan.

Tempus Responsus Systematis Controlis Critice Amortiti

The time response expression of a second order control system subject to unit step input function is given below.

The reciprocal of constant of negative power of exponential term in the error part of the output signal is actually responsible for damping of the output response.

Here in this equation it is ζωn. The reciprocal of constant of negative power of exponential term in error signal is known as time constant.

We have already examined that when the value of ζ (also know as damping ratio) is less than unity, the oscillation of the response decays exponentially with a time constant 1/ζωn. This is called under damped response.

On the other hand. when ζ is greater than unity, the response of the unit step input given to the system, does not exhibit oscillating part in it.

This is called over damped response. We have also examined the situation when damping ratio is unity that is ζ = 1.

In that situation the damping of the response is governed by the natural frequency ωn only. The actual damping at that condition is known as critical damping of the response.

As we have already seen in the associated expressions of time response of control system subject to input step function, the oscillation part is present in the response when damping ratio (ζ) is less than one and it is not present in the response when damping ratio is equal to one.

That means the oscillation part of the response just disappears when the damping ratio becomes unity. That is why damping of the response at ζ = 1, is known as critical damping.

More precisely, when damping ratio is unity, the response is critically damped and then the damping is known as critical damping.

Donum da et auctorem hortare
Suggestus
Standardae Erroris Mensurationis THD pro Systematibus Electricitatis
Standardae Erroris Mensurationis THD pro Systematibus Electricitatis
Tolerantia Erroris Distortionis Harmonicae Totalis (THD): Analyse Completa Basata in Scenariis Applicationis, Accurate Instrumentorum et Standardibus IndustriarumLimes acceptabilis erroris pro Distortione Harmonica Totali (THD) debet aestimari ex contextibus applicationis specificis, accurate instrumentorum mensurae et standardibus industriae applicabilibus. Sequitur analysis exacta indicium performance clavium in systematibus electricitatis, instrumentis industrialibus et applicationibus mensur
Edwiin
11/03/2025
Terminus ad terram busbar pro RMUs 24kV eco-friendly: Cur et Quomodo
Terminus ad terram busbar pro RMUs 24kV eco-friendly: Cur et Quomodo
Combinatio insulatoris solidi cum insulatorio aere sicco est directio pro unitatibus annularibus 24 kV. Per aequationem praestationis insulatoriae et compactitatis, usus adiutorii insulatorii solidi permittit superare testes insulatorios sine augmentatione significativa dimensionum inter phaseos vel inter phaseas et terram. Inclusio poli potest solvere insolationem interruptoris vacui et conductorum ei connectorum.Pro busbar egressu 24 kV, cum spatio phasearum retento in 110 mm, vulcanizatio sup
Dyson
11/03/2025
Quomodo Technologia Vacui Substituit SF6 in Modernis Unitatibus Principalibus Annularibus
Quomodo Technologia Vacui Substituit SF6 in Modernis Unitatibus Principalibus Annularibus
Unitates annulares (RMUs) utuntur in distributione secundaria electricitatis, directe conectentes ad usus finales sicut communitates residentiales, loca constructionis, aedificia commercialia, viae publicae, etc.In substatione residentiali, RMU introducit medium voltage 12 kV, quod deinde per transformatores diminuitur ad low voltage 380 V. Armatura commutationis low-voltage distribuit energiam electricam ad varias unitates usuarias. Pro transformatore distributionis 1250 kVA in communitate resi
James
11/03/2025
Quid est THD? Quomodo Afficit Qualitatem Potentiae et Aparatum
Quid est THD? Quomodo Afficit Qualitatem Potentiae et Aparatum
In campo electrotechnico, stabilitas et securitas systematum electricitatis summae sunt. Cum progressu technologiae electronicarum potentiae, usus generalis onerum non linearium ad problemam harmonicorum distortionum in systematibus electricitatis semper graviorem duxit.Definitio THDTotal Harmonic Distortion (THD) definitur ut ratio valoris radicis medii quadrati (RMS) omnium componentum harmonicarum ad valorem RMS componentis fundamentalis in signo periodicis. Est quantitas sine dimensione, sae
Encyclopedia
11/01/2025
Inquiry
Descarica
Obtine Applicatio Commerciale IEE-Business
Utiliza app IEE-Business ad inveniendum apparatus obtinendumque solutiones coniungendum cum peritis et participandum in collaboratione industriale ubique et semper propter totam supportionem tuorum projectorum electricitatis et negotiorum