Amsa da yadda ake kira, abin da naɗa wannan teorema ta shafi ziyarwa da wani abu zuwa wani abu mafi inganci. Teorema na Ziyarwa tana bayarwa masu siffar gajerar ƙarin hanyoyi a cikin ƙwarewar. Wannan teorema tana amfani a kan guje wasu teoremomai ƙarin.
Teorema na Ziyarwa ce ake magance cewa idan wani abu a cikin ƙwarewarsa ziyartar da sauran tsari da tsari a baya daga lokacin ɗaya ya ƙunshi da tsari a kan abu a ƙwarewar na biyu, maka ƙwarewar na ƙasa zai ci gaba ba suka ƙareba ko kuma idan wani abu a cikin ƙwarewarsa ziyartar da sauran karamin da karamin a baya daga lokacin ɗaya ya ƙunshi da karamin a kan abu a ƙwarewar na biyu, maka ƙwarewar na ƙasa zai ci gaba ba suka ƙareba.
Za a iya ɗaukan ƙwarewar kamar yadda aka nuna a cikin fig – a,
Zaɓi, V ita ce sauran tsari da ke bayar, Z1, Z2 da Z3 ita ce ƙwarewar ƙwarewar da suka ƙarfin. V1, V2 da V3 ita ce tsari a kan Z1, Z2 da Z3 ƙwarewar ƙwarewar, ɗaya ɗaya, da I ita ce sauran karamin da ke bayar da I1 na ɗaya ya ƙara a kan Z1 ƙwarewar, amma I2 na ɗaya ya ƙara a kan Z2 da Z3 ƙwarewar.
Idan za a ziyarta Z3 ƙwarewar da V3 sauran tsari kamar yadda aka nuna a cikin fig-b ko kuma da I2 sauran karamin kamar yadda aka nuna a cikin fig-c, saboda haka a kan Teorema na Ziyarwa duk ƙwarewar ƙwarewar da sauran sauran zai ci gaba ba suka ƙareba.

a cikin haka – karamin a kan sauran zai ci I, tsari a kan Z1 ƙwarewar zai ci V1, karamin a kan Z2 zai ci I2 kamar ɗaya ɗaya.
Don in fahimta da juyin ƙarin, za a iya ɗaukan ƙwarewar kamar yadda aka nuna a cikin fig – d.
A cikin babban tsari tsari a kan 3Ω da 2Ω ƙwarewar ƙwarewar suna ɗauki
Idan za a ziyarta 3Ω ƙwarewar da sauran tsari da 6 V kamar yadda aka nuna a cikin fig – e, maka
A cikin Ohm’s law tsari a kan 2Ω ƙwarewar da karamin a kan ƙwarewar
Ko kuma idan za a ziyarta 3Ω ƙwarewar da sauran karamin da 2A kamar yadda aka nuna a cikin fig – f, maka
Tsari a kan 2Ω ita ce V2Ω = 10 – 3× 2 = 4 V da tsari a kan 2A