Má tá roinnt foinse ag obair ar an am céanna i gciorcal feidhme, is é an siombal trí aon ghréasán den chiorcal ná suim na siombalaí a d'éirfeadh trí an gréasán do gach foinse ag coimeád gach foinse eile mar bhás.
Roghnaigh an ráiteas.
Anseo, tá dhá bhatarí 1.5 Volt ann sa chiorcal. Ag an staid seo, is 1.2 ampeir an siombal trí 1 ohm coincheap.
Léann an ammeter an luach seo sa pictiúr thuas.
Anois, áitnímid an batarí ar an taobh clé le ciorcal goirte cosúil leis an t-suíomh. Sa chás seo, is 0.6 ampeir an siombal atá ag teacht trí 1 ohm coincheap. Léann an ammeter an luach seo cosúil leis an bpictiúr thuas.
Anois, áitnímid an batarí ar an taobh deisce le ciorcal goirte cosúil leis an t-suíomh. Sa chás seo, is 0.6 ampeir an siombal atá ag teacht trí 1 ohm coincheap freisin. Léann an ammeter an luach seo cosúil leis an bpictiúr thuas.
1.2 = 0.6 + 0.6
Mar sin, is féidir linn a rá, más gá linn greas de chiorcal feidhme a cheangal le roinnt foinse vóltáil agus siombal, is é an siombal iomlán atá ag teacht trí an greas seo ná suim gach siombal ón gach foinse ó shon féin. Is é an tuairisc seo ina chuid matamaiticiúil Teoirim Superposition.
In ionad a bheith ag obair le dhá foinse cosúil lena mbraithear thuas, tá n uimhir de fhoinsí ag obair i gciorcal de bharr a bhfuil I siombal ag teacht trí ghréasán áirithe den chiorcal.
Má thugann duine ar bith isteach gach foinse as an gciorcal agus cuireann an foinse chéad chéad i bhfeidhm ar aonair san gciorcal agus ag tabhairt I1 siombal trí an greas áirithe, ansin cuirfidh sé an dara foinse ar ais agus cuirfidh an chéad foinse ina coincheap i bhfeidhm.
Anois, is féidir an siombal trí an greas áirithe don dara foinse ar aonair a lua I2.
De mheon chosúil, má thugann sé an tríú foinse ar ais agus cuireann an dara foinse ina coincheap i bhfeidhm. Anois, is féidir an siombal trí an greas áirithe don tríú foinse ar aonair a lua I3.
De mheon chosúil, nuair a bhíonn an foinse nth ag obair ar aonair i gciorcal agus cuireann gach foinse eile ina coincheap, ansin In siombal ag teacht trí an greas áirithe den chiorcal.
Anois de réir Teoirim Superposition, is é an siombal trí an greas nuair a bhíonn gach foinse ag obair ar an gciorcal ar an am céanna, ná suim na siombalaí ón gach foinse ag obair ar aonair ar an gciorcal.
D’fhéadfadh foinse feidhme a bheith de dhá chineál, ceann amháin is é foinse vóltáil agus an chéad eile is é foinse siombail. Nuair a bhaintear an foinse vóltáil as an gciorcal, an vóltáil a bhí ag cur leis an gciorcal tar éis a bhainte as. Mar sin, chun a fháil zero difríocht poteantúil leictreach idir na pointí a raibh an foinse vóltáil buailte, ní mór a bheith idir na dhá phointe seo go goirte le bealach neamhchoscáil. Le haghaidh níos mó cruinneas, is féidir an foinse vóltáil a athsholáthar leis an gcoincheap inmheánach. Anois, más gá linn foinse siombail a bhaint as an gciorcal, siombal a bhí ag cur leis an gciorcal tar éis a bhainte as. Zero siombal léiríonn ciorcal oscailte. Mar sin, nuair a bhaintear foinse siombail as an gciorcal, déanaimid an foinse a scuabadh as an gciorcal agus coimeád an dá phointe oscailte. Ós rud é go bhfuil an coincheap inmheánach de fhoinsí siombail éigin forleathan, is féidir an foinse siombail a bhaint as an gciorcal a lua leis an gcoincheap inmheánach a athsholáthar. Mar sin, do Teoirim Superposition, cuireann na foinsí vóltáil i bhfeidhm le ciorsa goirte agus cuireann na foinsí siombail i bhfeidhm le ciorsa oscailte.
Is féidir an teoirim seo a chur i bhfeidhm ar chiorcal líneach amháin, nó ciorcal atá ag tosnú le coincheap inmheánach ina bhfuil Dlí Ohm bailí. I gciorcail atá ag tosnú le coincheap inmheánach gan líneach, cosúil le valvaí termiúnacha, rectifícithe meicthe, ní mianach an teoirim seo. Is í an teoirim seo níos oiriúnaí ná roinnt theoirimeanna ciorcail eile. Ach is é an tairbhe is mó den modh seo ná go ndéanann sé a sheachaint a bheith ag déanamh roinnt cothromóide cosúil le chéile. Ach tar éis roinnt cleachtadh leis an modh seo, is féidir cothromóide a scríobh go díreach ón bpictiúr orígínach den chiorcal agus a sheachaint an obair a dhéanamh extra a chur isteach. D'fhorbairt muid na céimeanna éagsúla Teoirim Superposition mar a leanas,
Céim – 1
Cuir gach foinse ach ceann amháin ina coincheap inmheánach.
Céim – 2
Bain amach na siombalaí i gcéin éagsúla ag úsáid Dlí Ohm simplí.
Céim – 3
Athraigh an próiseas ag úsáid gach foinse turn-by-turn mar an foinse amháin gach uair.
Céim – 4
Cuir gach siombal i gcéin áirithe de bharr gach foinse. Is é seo an luach iarbhíochta an siombal sa céin áirithe nuair a bhíonn gach foinse ag obair ar an gciorcal ar an am céanna.
Mura bhfuil dhá foinse vóltáil V1 agus V2 ag obair ar an gciorcal.
Mar gheall ar na dha foinse vóltáil seo, is é an siombal I atá ag teacht trí 1 ohm coincheap R.
Anois cuir V2 ina choincheap goirte, ag coimeád V1 ina aghaidh agus mearsaigh an siombal trí 1 ohm coincheap, R. Abair é I1.
Ansina, cuir V1 ina choincheap goirte, ag coimeád V2 ina aghaidh agus mearsaigh an siombal trí an coincheap céanna R agus abair é I2.
Anois, más gá linn na dha siombal seo, I1 agus I2 a chur le chéile, gabhfaidh muid an siombal atá cothroimeach leis an siombal - a bhí ag teacht trí R, nuair a bhí na dha foinse vóltáil V1 agus V2 ag obair ar an gciorcal ar an am céanna. Seo é I1 + I