Tansufasuna suka fi dacewa a cikin kayan alama mai karfi da ake amfani da su a wata yankin da ke kusa da sayaradda masana'antu. Saboda haka, a matsayin mutanen sayaradda masana'antu, ana bukatar da ake gaba bambancin bincike da tansufasun don in iya tabbatar da yanayin da ake yi aiki. Don in iya yi wannan, za a bukatar da ake amfani da kyakkyawan aljubu na musamman, wadannan za a iya samun bayanai a wurare da za a dogara a nan.

Tansufasa shine kayan alama mai karfi da ake amfani da ita a cikin sauyin sayaradda masana'antu don in iya gudanar da daraja ta voltaji ba da ma'ana. Wannan zai iya mana nufin da ake ci gaba ko kawo voltajin. Daraja ta voltaji da amperaji za a iya gudanar da tansufasa, amma tsari ya zama daidai.
Tansufasa zai iya faɗa a kan waɗannan uku fasahohi na biyu ba da ma'ana ga yadda ake yi aiki:
Ake ci gaban daraja ta voltaji daga darajan da ta zama daidai, wannan shine tansufasa na ci gaba.
Ake kawo daraja ta voltaji daga darajan da ta zama gaba, wannan shine tansufasa na kawo.
Tansufasa na isali shine kayan alama da ba ake gudanar da voltaji, amma an amfani da ita don in iya isali da duwan fadin karkashin kayan alama. Ana kiran shi a matsayin tansufasa na 1 zuwa 1.
Kalmomin "kyakkyawan EMF na tansufasa" suna nufin kyakkyawan limiyi da ake amfani da ita don in iya gudanar da daraja ta alamar electromagnetic (EMF) a cikin tukunan tansufasa.
Kyakkyawan alamar electromagnetic na tukanin mafi girma shine:
E1=4.44fϕmN1=4.44fBmAN1
Tambayar da aikin jiki na alamar kofin dogon ita ce:
E2=4.44fϕmN2=4.44fBmAN2
Daga cikin,
f - Maɓallu mai yin bayanai,
ϕm – Mafi tsawo a kanbace,
Bm– Mafi tsawo a kanbace,
A – Tsakiyar kanbace,
N1 da N2 – Jami'ar gida a kanban bayanai da kofin dogon.
Takaitaccen wurin maimaitaccen yana nufin takaitaccen adadin kungiyoyi a tsakiyar (N1) zuwa adadin kungiyoyi a karamin (N2) na maimaitaccen.
Takaitaccen Wurin=Adadin Kungiyoyi a Tsakiya(N1)/Adadin Kungiyoyi a Karami(N2)
Kalmar “takaitaccen saurar maimaitaccen” yana nufin alaka bayan ci gaban daɗi (AC) na maimaitaccen zuwa ci gaban daɗi (AC) na maimaitaccen. Ana sanya shi a matsayin K.
Takaitaccen Saurar,
K=Saurar Ci Gaba (V2)/Saurar Ci Gaba (V1)
Kalmar “takaitaccen tashin maimaitaccen” yana nufin alaka bayan tashi na maimaitaccen, wanda tashin ta fi karamin, zuwa tashi na maimaitaccen, wanda tashin ta fi tsakiyar.
Takaitaccen Tashi,
K=Iyarar da karamin jirgin (I2)/Iyarar da karamin yara (I1)
Tana tushen hanyar da ya bayyana inganci wanda ke ciki a nan iya da karamin gurbin, iya da karamin tsari, da iya da karamin jirgin:
Iyarar da karamin gurbin =N1/N2=V1/V2=I2/I1=1/K
A wannan adadin, iya da karamin tsari ya zama da shi a kan iya da karamin jirgin. Wannan shine saboda lokacin da mutanen jirgin ya zama ta, ya zama ta da iya da karamin jirgin a matsayin da take da ita don ci gaba da inganci na karamin gurbin a kan takawa na karamin jirgin a matsayin da take da ita.
Zamani ake sani a matsayin MMF. Sunan daban-daban na mutanen jirgin shine MMF. Inganci na karamin gurbin a kan takawa na mutanen jirgin an samu ne a kan MMF. Ana samun shi a kan tsakiyar gurbin da iya da karamin jirgin.
Gurbin yara, MMF=N1I1
Tsanonin wanda yaɗa,MMF=N2I2
Daga cikin,
I1-Kwakwalwa a tsanoni na gaba-gaban danayya
I2– Kwakwalwa a tsanoni na biyu-biyun danayya
An yi amfani da kubiyar kofi a gudanar da tsanoni na gaba-gaban da kuma biyu-biyun danayyan. Saboda haka, suna da jirgin yadda, amma wanda yana da dabi'a. R1 shin alama mafi inganci don nuna jirgin yadda tsanoni na gaba-gaban, kuma R2 shin alama mafi inganci don nuna jirgin yadda tsanoni na biyu-biyun.
A nan an yi takarda kan duk zabe na danayyan, bai a gaba-gaban ko a biyu-biyun, ana bayyana jirgin yadda tsanoni na danayyan.
Saboda haka, za a iya kula jirgin yadda tsanoni na gaba-gaban danayyan kamar yadda ake bayyana:
R01=[R1+R′2]=[R1+(R2/K2)]
An samar da hanyar daɗi na makarantar daɗi na tsohon birnin kamar yadda ake nuna:
R02=[R2+R′1]=[R2+(R1K2)]
Idan,
R1 ′ yana nufin hanyar daɗi na makarantar daɗi na tsohon birnin kamar yadda ake nuna,
R2 ′ yana nufin hanyar daɗi na tsohon birnin daɗi na makarantar kamar yadda ake nuna,
R1 yana nufin hanyar daɗi na makarantar,
R2 yana nufin hanyar daɗi na tsohon birnin.
R01 ya nufin hanyar zuwa daidai na karamin tashin da take da shi a tsakiyar farko
R02 ya nufin hanyar zuwa daidai na karamin tashin da take da shi a tsakiyar biyu
Kalma “karamin hanyar zauke na tashin karamin tashi” ya nufin karamin hanyar zauke wanda yake samu a kan karamin tashi saboda zauken kayayyakin mafi yawa a cikin karamin tashi
A nan tsakiyar farko
X1= E1/I1
A nan tsakiyar biyu
X2= E2/I2
A nan abin da ta
X1 ya nufin karamin hanyar zauke na tsakiyar farko
X2 na nufin tasirin kirkiya na tushen gida,
E1 na nufin tasirin kudin tushen gida, da
E2 na nufin tasirin kudin tushen gida.
Tasirin kirkiyar tushen gida da turu ya haɗa suka haɗa tsakanin tasirin kirkiyar gida da ke cikin da ita ce tasirin kirkiyar gida da turu.
Tasirin kirkiyar gida da turu, wanda yake da tushen gida, shi ne:
X01=[X1+X′2]=[X1+(X2/K2) ]
Tasirin kirkiyar gida da turu, wanda yake da tushen gida, shi ne:
X02=[X2+X′1]=[X2+(K2X1)]
A cikin wannan tushen,
X1‘ yana nufin leakage reactance na primary winding a nan secondary side, da kuma
X2‘ yana nufin leakage reactance na secondary winding a nan primary side.
Kalmomin “jimlar impedance na transformer windings” yana nufin opposition wanda yake bayarwa ne daga gabashin combined efforts na winding resistances & leakage reactance.
Impedance na transformer’s primary winding stated as
Z1=√R21+X21
Impedance na transformer’s secondary winding stated as
Z2=√R22+X22
A cikin tushen muhimmanci na transformar, zan iya kula da muhimmancin gaba daidai:
Z01=√R201+X201
A cikin tushen na'ura na transformar, zan iya kula da muhimmancin gaba daidai:
Z02=√R202+X202
A cikin kungiyar daidai na transformar, ana amfani da tsarin KVL don samun tambayar da turuwa da farkon tashi a transformar.
Tambayar da turuwar transformar yana iya rubuta haka:
V1=E1+I1R1+jI1X1=E1+I1(R1+jX1)=E1+I1Z1
An samar da gajimare karamin sanya na birnin karamin sanya yana iya rubuta haka:
V2=E2−I2R2−jI2X2=E2−I2(R2+jX2)=E2−I2
1). Kashe kokari &
2). Kashe koperi
wata shi ne biyu na kwanaki da zai iya faru a cikin transformer.
Kwashe na hysteresis tare da kwashe na eddy current suna daya da kwashe na kokarin na transformer, wanda zai iya rubuta a haka:
Kwashe na kokarin=Ph+Pe
A wannan yanar gizo, kwashe na hysteresis yana faru saboda tsirriyar magana mai sauƙi wanda yake faru a cikin kokari.
Kwashe na hysteresis,Ph=ηB1.6maxfV
Sannan, kwashe na eddy current yana faru saboda eddy currents da suka haɗa a cikin kokari.
Kwashe na eddy current,Pe=keB2mf2t2
Idan,
η – Steinmetz coefficient,
Bm– Core Maximum flux density,
Ke– Eddy current constant,
f – Frequency of magnetic flux reversal, and
V – Core’s volume.
Copper loss occurs as a result of the windings of the transformer having a high resistance.
Copper loss=I21R1+I22R2
The change in the output voltage of a transformer from no-load to full load is described as the transformer’s voltage regulation, and it is measured relative to the transformer’s no-load voltage.
Voltage Regulation=(No load voltage -Full load voltage)/No load voltage
Kadaddinsu na transformer ita ce tarihin gaba-gaban karkashin kwarewa zuwa gaba-gaban karkashin cikin bayan.
Kadaddinsu,η=Gaba-gaban karkashin kwarewa(Po)/Gaba-gaban karkashin cikin bayan(Pi)
Kadaddinsu,η=Gaba-gaban karkashin kwarewa/(Gaba-gaban karkashin kwarewa+Yawan)
An amfani da rumar da ya bayar don nuna kadaddinsu na transformer a fufun yadda ake iya taka:
η= x × full load kVA×power factor/(x × full load kVA×power factor)+Yawan
Kadaddinsu na transformer daga rana zuwa rana ita ce tarihin gaba-gaban kwarewa (kWh) zuwa gaba-gaban karkashin cikin bayan (kWh) a lokacin 24 sa'atu.
ηallday=Gaba-gaban kwarewa a kWh / Gaba-gaban karkashin cikin bayan a kWh
Idan yawan core losses & copper losses na transformer suna fiye wajen abin da yawa, ana iya cewa kadaddinsu na transformer ta tsawo.
Saboda haka, don in samun kadaddinsu na transformer mai tsawo
Faduwar zama = Faduwar gwiwa
Karamin kai (ko) karamin kai na tsakiyar tashin karamin kai daidaitaccen faduwar muhimmanci yana nuna,
I2=√Pi/R02
Wani wannan rubutu ya bayyana abubuwan daidai na rarrabe da suka fi shahara ga duka masu ilimi da takardun kimiyya mai ruwa da kuma duka masu asali na kimiyya mai ruwa.
Bayani: Jin daidai wani rubutu, rubutu mai kyau yana bukata a kunna, idanni a tabbatar da haka za a yi la'akari.