Pertimbangkan sirkuit RLC di mana resistor, induktor, dan kapasitor terhubung secara paralel satu sama lain. Kombinasi paralel ini diberi daya oleh tegangan suplai, VS. Sirkuit RLC paralel ini adalah kebalikan dari sirkuit RLC seri.
Dalam sirkuit RLC seri, arus yang mengalir melalui ketiga komponen yaitu resistor, induktor, dan kapasitor tetap sama, tetapi dalam sirkuit paralel, tegangan di setiap elemen tetap sama dan arus dibagi di setiap komponen tergantung pada impedansi setiap komponen. Itulah sebabnya sirkuit RLC paralel dikatakan memiliki hubungan dual dengan sirkuit RLC seri.
Arus total, IS yang diambil dari suplai sama dengan jumlah vektor dari arus resistif, induktif, dan kapasitif, bukan jumlah matematika dari tiga arus cabang individual, karena arus yang mengalir di resistor, induktor, dan kapasitor tidak berada dalam fase yang sama; jadi mereka tidak dapat ditambahkan secara aritmatika.
Terapkan Hukum Arus Kirchhoff, yang menyatakan bahwa jumlah arus yang memasuki simpul atau node, sama dengan jumlah arus yang meninggalkan simpul tersebut, kita mendapatkan,
Misalkan V adalah tegangan suplai.
IS adalah arus total sumber.
IR adalah arus yang mengalir melalui resistor.
IC adalah arus yang mengalir melalui kapasitor.
IL adalah arus yang mengalir melalui induktor.
θ adalah perbedaan sudut fase antara tegangan suplai dan arus.
Untuk menggambar diagram fasa sirkuit RLC paralel, tegangan diambil sebagai acuan karena tegangan di setiap elemen tetap sama dan semua arus lainnya yaitu IR, IC, IL digambar relatif terhadap vektor tegangan ini. Kita tahu bahwa dalam kasus resistor, tegangan dan arus berada dalam fase yang sama; jadi gambar vektor arus IR dalam fase dan arah yang sama dengan tegangan. Dalam kasus kapasitor, arus memimpin tegangan sebesar 90o sehingga, gambar vektor IC memimpin vektor tegangan, V sebesar 90o. Untuk induktor, vektor arus IL tertinggal dari tegangan sebesar 90o sehingga gambar IL tertinggal dari vektor tegangan, V sebesar 90o. Sekarang gambar hasil dari IR, IC, IL yaitu arus IS dengan perbedaan sudut fase θ terhadap vektor tegangan, V.
Dengan menyederhanakan diagram fasa, kita mendapatkan diagram fasa yang disederhanakan di sisi kanan. Pada diagram fasa ini, kita dapat dengan mudah menerapkan teorema Pythagoras dan kita mendapatkan,