Herc inductor di ser inductanciya da ya hewce bir kîjan resistansî ye. Piçûk bav rengina vê resistanc R, her yek çend ku kaliteya spirayê behter e. Kalit factor an jî Q factor indactor bi rêjeyên operasyonî ω di navbera reactance'a spiralê û resistancê de îndefinî kirin.
Nimûne, ji bo inductor, kalit factor di navbera reactance'a spiralê û resistancê de îndefinî kirin.
Lê L heye induktanciyê efektîv a spiralê di Henrys de û R heye resistanciyê efektîv a spiralê di Ohms de. Ji ber ku yekîti hemî resistanc û reactance Ohm e, Q ratio bêtirkesar e.
Q factor dikarin were îndefinî kirin
Bikin biguheztin ên pêşniyariya par. Ji bo ên bikin wergerînin inductor V di frekanseyên ω radian/seconds de apply bikiyê û inductor L di effective internal resistanc R wek Figure 1(a) nîşan didin. Di navbera inductor da peak current Im be.
Yene energy maximum stored in the inductor
Figure 1. RL and RC circuits connected to a sinusoidal voltage sources
The average power dissipated in the inductor per cycle
Hence, the energy dissipated in the inductor per cycle
Hence,
Figure 1(b). shows a capacitor C with small series resistance R associated within. The Q-factor or the quality factor of a capacitor at the operating frequency ω is defined as the ratio of the reactance of the capacitor to its series resistance.
Thus,
In this case also, the Q is a dimensionless quantity since the unit of both reactance and resistance is the same and it is Ohm. Equation (2) giving the alternative definition of Q also holds good in this case. Thus, for the circuit of Figure 1(b), on application of a sinusoidal voltage of value V volts and frequency ω, the maximum energy stored in the capacitor.
Where, Vm is the maximum value of voltage across the capacitance C.
But if
then
Where, Im is the maximum value of current through C and R.
Hence, the maximum energy stored in capacitor C is
Energy dissipated per cycle
So, the quality factor of capacitor is
Often a lossy capacitor is represented by a capacitance C with a high resistance Rp in shunt as shown in Figure 2.
Then for the capacitor of Figure 2, the maximum energy stored in the capacitor
Where, Vm is the maximum value of the applied voltage. The average power dissipated in resistance Rp.