• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


De Sauty Bridge

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Is De Sauty Bridge

This bridge provide us the most suitable method for comparing the two values of capacitor if we neglect dielectric losses in the bridge circuit. The circuit of De Sauty’s bridge is shown below.

Battery is applied between terminals marked as 1 and 4. The arm 1-2 consists of capacitor c1 (whose value is unknown) which carries current i1 as shown, arm 2-4 consists of pure resistor (here pure resistor means we assuming it non inductive in nature), arm 3-4 also consists of pure resistor and arm 4-1 consists of standard capacitor whose value is already known to us.
Let us derive the expression for capacitor c1 in terms of standard capacitor and resistors.
At balance condition we have,

It implies that the value of capacitor is given by the expression

In order to obtain the balance point we must adjust the values of either r3 or r4 without disturbing any other element of the bridge. This is the most efficient method of comparing the two values of capacitor if all the dielectric losses are neglected from the circuit.

Now let us draw and study the phasor diagram of this bridge. Phasor diagram of De Sauty bridge is shown below:
De Sauty's bridge phasor diagram
Let us mark the current drop across unknown capacitor as e1, voltage drop across the resistor r3 be e3, voltage drop across arm 3-4 be e4 and voltage drop across arm 4-1 be e2. At balance condition the current flows through 2-4 path will be zero and also voltage drops e1 and e3 be equal to voltage drops e2 and e4 respectively.

In order to draw the phasor diagram we have taken e3 (or e4) reference axis, e1 and e2 are shown at right angle to e1 (or e2). Why they are at right angle to each other? Answer to this question is very simple as capacitor is connected there, therefore phase difference angle obtained is 90o.
Now instead of some advantages like bridge is quite simple and provides easy calculations, there are some disadvantages of this bridge because this bridge give inaccurate results for imperfect capacitor (here imperfect means capacitors which not free from dielectric losses). Hence we can use this bridge only for comparing perfect capacitors.
Here we interested in modify the De Sauty’s bridge, we want to have such a kind of bridge that will gives us accurate results for imperfect capacitors also. This modification is done by Grover. The modified circuit diagram is shown below:
De Sauty's bridge
Here Grover has introduced electrical resistances r1 and r2 as shown in above on arms 1-2 and 4-1 respectively, in order to include the dielectric losses. Also he has connected resistances R1 and R2 respectively in the arms 1-2 and 4-1. Let us derive the expression capacitor c1 whose value is unknown to us. Again we connected standard capacitor on the same arm 1-4 as we have done in De Sauty’s bridge. At balance point on equating the voltage drops we have:

On solving above equation we get:

This the required equation.
By making the phasor diagram we can calculate dissipation factor. Phasor diagram for the above circuit is shown below
Phasor of De Sauty's bridge-2
Let us mark δ1 and δ2 be phase angles of the capacitors c1 and c2 capacitors respectively. From the phasor diagram we have tan(δ1) = dissipation factor = ωc1r1 and similarly we have tan(δ2) = ωc2r2.
From equation (1) we have

on multiplying ω both sides we have


Therefore the final expression for the dissipation factor is written as

Hence if dissipation factor for one capacitor is known. However this method is gives quite inaccurate results for dissipation factor.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
PT Fuse Slow Blow: Causes, Detection & Prevention
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
Edwiin
10/24/2025
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
Echo
10/24/2025
Fuse Maintenance & Replacement: Safety and Best Practices
Fuse Maintenance & Replacement: Safety and Best Practices
1. Fuse MaintenanceFuses in service should be regularly inspected. The inspection includes the following items: Load current should be compatible with the rated current of the fuse element. For fuses equipped with a fuse blown indicator, check whether the indicator has actuated. Check the conductors, connection points, and the fuse itself for overheating; ensure connections are tight and making good contact. Inspect the fuse exterior for cracks, contamination, or signs of arcing/discharge. Liste
James
10/24/2025
Maintenance and Repair Items for 10kV High-Voltage Switchgear
Maintenance and Repair Items for 10kV High-Voltage Switchgear
I. Routine Maintenance and Inspection(1) Visual Inspection of Switchgear Enclosure No deformation or physical damage to the enclosure. Protective paint coating shows no severe rust, peeling, or flaking. Cabinet is securely installed, clean on the surface, and free of foreign objects. Nameplates and identification labels are neatly affixed and not falling off.(2) Check of Switchgear Operating Parameters Instruments and meters indicate normal values (comparable to typical operating data, with no s
Edwiin
10/24/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.