La Llei del Quadrat Invers de l'Il·luminació
Aquesta llei estableix que l'il·luminació (E) en qualsevol punt d'un pla perpendicular a la línia que uneix el punt i la font és inversament proporcional al quadrat de la distància entre la font i el pla.
On, I és la intensitat luminosa en una direcció donada.
Suposem que hi ha una font amb intensitat luminosa I en qualsevol direcció. D'aquesta font es prenen dues distàncies com a radi fent aquesta font el centre.
Com es mostra a la figura, els dos radis són r1 i r2. A la distància r1 es pren una àrea superficial elemental dA1. En aquesta direcció de dA1, es considera dA2 a la distància r2.
dA1 i dA2 estan dins el mateix angle sòlid Ω amb el flux luminós distribuït Φ.
L'àrea dA1 a r1 rep la mateixa quantitat de flux luminós que l'àrea dA2 a r2 ja que els angles sòlids són els mateixos.
Un altre cop, l'angle sòlid per a les dues superfícies elementals
L'il·luminació a la distància
L'il·luminació a la distància
Ara, de l'equació (i) obtenim,
Ara, a l'equació (iii),
Això indica la relació ben coneguda de la llei del quadrat invers per a fonts puntuals.
Es veu que l'il·luminació varia inversament al quadrat de la distància del punt il·luminat des de la font.
Si la font de llum no és una font puntual, podem assumir aquesta gran font com la suma de moltes fonts puntuals.
Aquesta relació es pot aplicar a totes les fonts de llum.
La Llei del Cosinus de l'Il·luminació
La llei estableix que l'il·luminació en un punt d'un pla és proporcional al cosinus de l'angle de la llum incident (l'angle entre la direcció de la llum incident i la normal al pla).
És l'equació de l'il·luminació per a fonts puntuals.
On, Iθ és la intensitat luminosa de la font en la direcció del punt il·luminat, Ɵ és l'angle entre la normal al pla que conté el punt il·luminat i la línia que uneix la font al punt il·luminat, i d és la distància al punt il·luminat.
Però per a fonts no puntuals, la llei del cosinus de l'il·luminació es pot analitzar en termes de flux luminós en lloc d'intensitat luminosa.
L'il·luminació o la densitat superficial del flux de llum rebut per una àrea elemental varia amb la distància de la font de llum i l'angle de l'àrea elemental respecte a la direcció del flux de llum.
L'il·luminació màxima es produeix quan l'element d'àrea rep el flux de llum normal a la seva superfície.
Quan l'element d'àrea es penja respecte a la direcció del flux de llum, l'il·luminació o la densitat de flux a la superfície elemental es redueix. Això es pot entendre de dues maneres.
L'àrea elemental inclinada (δA) no pot interceptar tot el flux de llum que rebia anteriorment i, per tant, l'il·luminació disminueix.
Si l'àrea elemental (δA) augmenta, l'il·luminació
disminueix.
Per al cas (1) quan l'element δA es penja en un angle Ɵ, la quantitat de flux interceptat δA es dóna per
Així, el flux rebut per δA es redueix en un factor cosƟ.
Ara, l'il·luminació a δA és
Per al cas (2) si tot el flux interceptat pel major element δA’ :
Així, l'il·luminació es converteix en
Ambdós casos d'aquests resultats condueixen a
Declaració: Respecta l'original, els bons articles meritzen ser compartits, si hi ha infracció de drets contacta per eliminar.