A cikin kimiyyar jirgin ruwa, Annabi Maximum Power Transfer Theorem ya ce a nan a cikin zabe ta hanyar daɗi na biyu mai zurfi, a takaice, yadda ake bazuwa wata zuwa abu a kan zabe ta hanyar daɗi (RL) za su dace da Thevenin equivalent resistance (RTH) ta zabe ta. Thevenin equivalent resistance ta zabe ta shine resistance ta ake gani a fadinsa terminals ta zabe ta bayan ake cika gabashin voltage kuma ake shiga terminals ta daɗi.
Annabi Maximum Power Transfer Theorem ta yi amfani da amincewa da ake iya ba abu a kan zabe ta hanyar daɗi ko da wannan ake yi amfani da load resistance da voltage da current a kan abu. Idan load resistance ta dace da Thevenin equivalent resistance ta zabe ta, voltage da current a kan abu za su dace, kuma power ta ake bazuwa wata zuwa abu za su dace.
Annabi Maximum Power Transfer Theorem ya fi amfani a cikin tsarin circuits da systems na kimiyyar jirgin ruwa, musamman idan abubuwa ta ita ce ake bazuwa wata zuwa abu da kyau. Yana iya ba maimakonai ake nuna load resistance daidai na zabe ta, ake hasashen da power ta ake bazuwa wata zuwa abu za su dace.
Annabi Maximum Power Transfer Theorem an samun amfani ne a cikin linear, passive two-port networks kawai. Ba zan iya amfani a cikin nonlinear networks ko a cikin networks da suka da ports masu biyu. Ba zan iya amfani a cikin active networks, kamar those containing amplifiers.
Idan,
Current – I
Power – PL
Thevenin’s Voltage – (VTH)
Thevenin’s Resistance – (RTH)
Load Resistance -RL
Power dissipated across load resistor is
PL=I2RL
Substitute I=VTh /RTh+RL in the above equation.
PL=⟮VTh/(RTh+RL)⟯2RL
PL=VTh2{RL/(RTh+RL)2} (Equation 1)
When the maximum or minimum is reached, the first derivative is zero. So, differentiate Equation 1 with RL and fix it equal to zero.
dPL/dRL=VTh2{(RTh+RL)2×1−RL×2(RTh+RL) / (RTh+RL)4}=0
(RTh+RL)2−2RL(RTh+RL)=0
(RTh+RL)(RTh+RL−2RL)=0
(RTh−RL)=0
RTh=RL or RL=RTh
Therefore, RL=RTh – The condition for maximum power dissipation over the load. That is, if the value of load resistance equals the value of source resistance, i.e., Thevenin’s resistance, then the power distributed across the load is maximised.
The value of Maximum Power Transfer
Substitute RL=RTh & PL=PL,Max in (Equation 1).
PL,Max=VTh2{RTh/ (RTh+RTh)2}