• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Evolution of 110 kV Substation Power Supply Side Bus Connection Configurations

Vziman
Vziman
Field: Manufacturing
China

Early 110 kV substations typically adopted the "internal bus connection" configuration on the power supply side, where the power source commonly used the "internal bridge connection" method. This was often observed in certain 220 kV substations supplying 110 kV buses from different transformers in a "same-direction dual-power" arrangement. This setup involved two transformers, with the 10 kV side using a single busbar with sectionalized connection.

Advantages included simple wiring, convenient operation, straightforward automatic transfer switching, and only three switches required on the power side for the two transformers. Additionally, the power-side busbar did not require separate protection—being covered within the transformer differential protection zone—and the overall investment was lower. However, limitations existed: each busbar could accommodate only one transformer, constraining the growth of the 10 kV load capacity. Moreover, when one transformer was in operation, half of the substation had to be de-energized, creating a risk of complete station blackout if the other half experienced equipment failure.

To enhance station capacity and improve supply reliability, an intermediate-stage solution for 110 kV substations adopted the "expanded internal bus connection" method, with the power side mainly using the "expanded bridge connection." This configuration involved three transformers. Power was supplied through two "side busbars" from the same-direction dual-power 110 kV buses of a single 220 kV substation, and one "middle busbar" from a different-direction single-power supply of another 220 kV substation.

The 10 kV side continued to use a single sectionalized busbar, ideally segmenting the middle transformer’s 10 kV output into sections A and B. This approach increased the number of 10 kV outgoing circuits and allowed load redistribution from the middle transformer to the other two in case of outage. However, it introduced greater complexity in operation and automatic switching, along with higher investment.

With urban expansion, increasing land scarcity, and surging electricity demand, there arose a pressing need to further boost substation capacity and reliability. The current design for 110 kV substations primarily employs a single sectionalized busbar on the power side, connecting four transformers—each linked to separate buses, with the two middle transformers cross-connected to the upstream power source. On the 10 kV side, an A/B segmented configuration is used, forming an eight-segment "ring connection" powered by the four transformers.

This design increases the number of 10 kV outgoing circuits and enhances supply reliability. The cross-connection of the two middle transformers to the upstream source ensures uninterrupted power supply to the eight-segment 10 kV busbar even if one 110 kV busbar is de-energized. Drawbacks include the need for dedicated protection on the 110 kV busbar, high initial investment, and increased operational complexity.

Give a tip and encourage the author!
Recommended
What Are the Types of Reactors? Key Roles in Power Systems
What Are the Types of Reactors? Key Roles in Power Systems
Reactor (Inductor): Definition and TypesA reactor, also known as an inductor, generates a magnetic field within the surrounding space when current flows through a conductor. Therefore, any current-carrying conductor inherently possesses inductance. However, the inductance of a straight conductor is small and produces a weak magnetic field. Practical reactors are constructed by winding the conductor into a solenoid shape, known as an air-core reactor. To further increase inductance, a ferromagnet
James
10/23/2025
35kV Distribution Line Single-Phase Ground Fault Handling
35kV Distribution Line Single-Phase Ground Fault Handling
Distribution Lines: A Key Component of Power SystemsDistribution lines are a major component of power systems. On the same voltage-level busbar, multiple distribution lines (for input or output) are connected, each with numerous branches arranged radially and linked to distribution transformers. After being stepped down to low voltage by these transformers, electricity is supplied to a wide range of end users. In such distribution networks, faults such as phase-to-phase short circuits, overcurre
Encyclopedia
10/23/2025
What Is MVDC Technology? Benefits, Challenges & Future Trends
What Is MVDC Technology? Benefits, Challenges & Future Trends
Medium-voltage direct current (MVDC) technology is a key innovation in power transmission, designed to overcome limitations of traditional AC systems in specific applications. By transmitting electrical energy via DC at voltages typically ranging from 1.5 kV to 50 kV, it combines the long-distance transmission advantages of high-voltage DC with the flexibility of low-voltage DC distribution. Against the backdrop of large-scale renewable integration and new power system development, MVDC is emerg
Echo
10/23/2025
Why Does MVDC Grounding Cause System Faults?
Why Does MVDC Grounding Cause System Faults?
Analysis and Handling of DC System Grounding Faults in SubstationsWhen a DC system grounding fault occurs, it can be classified as single-point grounding, multi-point grounding, loop grounding, or reduced insulation. Single-point grounding is further divided into positive-pole and negative-pole grounding. Positive-pole grounding may cause misoperation of protection and automatic devices, while negative-pole grounding may lead to failure to operate (e.g., relay protection or tripping devices). On
Felix Spark
10/23/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.