• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Charging a Capacitor

Electrical4u
Field: Basic Electrical
0
China

Whenever we connect an uncharged or partly charged capacitor with a voltage source whos voltage is more than the voltage of the capacitor (in case of partly charged capacitor) it recieves charge from the source and the voltage across the capacitor rises exponentially until it becomes equal and opposite to voltage of the source.

Let us connect one capacitor of capacitance C in series with a resistor of resistance R. We also connect this series combination of capacitor and resistor with a battery of voltage V through a push switch S.charging a capacitor
Let us assume the capacitor is initially uncharged. When we push the switch, as the capacitor is uncharged, no voltage gets developed across the capacitor, thus the capacitor will behave as short circuit. At that moment the charge just starts accumulating in the capacitor. The current through the circuit will only be limited by resistance R.

So, the initial current is V/R. Now gradually the voltage is being developed across the capacitor, and this developed voltage is in the opposite of the polarity of the battery. As a result the current in the circuit gets gradually decreased. When the voltage across the capacitor becomes equal and opposite of the voltage of the battery, the current becomes zero. The voltage gradually increases across the capacitor during charging. Let us consider the rate of increase of voltage across the capacitor is dv/dt at any instant t. The current through the capacitor at that instant is

Applying, Kirchhoff’s Voltage Law, in the circuit at that instant, we can write,

Integrating both side we get,

Now, at the time of switching on the circuit, voltage across the capacitor was zero. That means, v = 0 at t = 0.
Putting these values in above equation, we get

After getting the value of A, we can rewrite the above equation as,



Now, we know that,

This is the expression of charging current I, during process of charging.
The current and voltage of the capacitor during charging is shown below.
charging a capacitor
Here in the above figure, Io is the initial current of the capacitor when it was initially uncharged during switching on the circuit and Vo is the final voltage after the capacitor gets fully charged.
Putting t = RC in the expression of charging current (as derived above), we get,

So at the time t = RC, the value of charging current becomes 36.7% of initial charging current (V / R = Io) when the capacitor was fully uncharged. This time is known as the time constant of the capacitive circuit with capacitance value C farad along with the resistance R ohms in series with the capacitor. The value of voltage developed across that capacitor at the time constant is

Here Vo is the voltage finally developed across the capacitor after the capacitor is fully charged and it is same as source voltage (V = Vo).time constant


Source: Electrical4u.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Revolutionary 550 kV Capacitor-Free Arc-Quenching Circuit Breaker Debuts in China
Recently, a Chinese high-voltage circuit breaker manufacturer, in collaboration with numerous renowned enterprises, successfully developed a 550 kV capacitor-free arc-quenching chamber circuit breaker, which has passed the full suite of type tests on its first attempt. This achievement marks a revolutionary breakthrough in the interrupting performance of circuit breakers at the 550 kV voltage level, effectively resolving the long-standing “bottleneck” issue caused by reliance on imported capacit
11/17/2025
Why Capacitor Bank Isolators Overheat & How to Fix
Causes of High Temperature in Isolating Switches of Capacitor Banks and Corresponding SolutionsI. Causes: OverloadThe capacitor bank is operating beyond its designed rated capacity. Poor ContactOxidation, loosening, or wear at contact points increases contact resistance. High Ambient TemperatureElevated external environmental temperatures impair the switch’s ability to dissipate heat. Inadequate Heat DissipationPoor ventilation or dust accumulation on heat sinks hinders effective cooling. Harmon
11/08/2025
Voltage Imbalance: Ground Fault, Open Line, or Resonance?
Single-phase grounding, line break (open-phase), and resonance can all cause three-phase voltage unbalance. Correctly distinguishing among them is essential for rapid troubleshooting.Single-Phase GroundingAlthough single-phase grounding causes three-phase voltage unbalance, the line-to-line voltage magnitude remains unchanged. It can be classified into two types: metallic grounding and non-metallic grounding. Inmetallic grounding, the faulted phase voltage drops to zero, while the other two phas
11/08/2025
Vacuum Circuit Breakers for Capacitor Bank Switching
Reactive Power Compensation and Capacitor Switching in Power SystemsReactive power compensation is an effective means to increase system operating voltage, reduce network losses, and improve system stability.Conventional Loads in Power Systems (Impedance Types): Resistance Inductive reactance Capacitive reactanceInrush Current During Capacitor EnergizationIn power system operation, capacitors are switched in to improve power factor. At the moment of closing, a large inrush current is generated.
10/18/2025
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.