• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Transient Stability in Power System

Electrical4u
Field: Basic Electrical
0
China

What Is Transient Stability In Power System

The ability of a synchronous power system to return to stable condition and maintain its synchronism following a relatively large disturbance arising from very general situations like switching ON and OFF of circuit elements, or clearing of faults, etc. is referred to as the transient stability in power system. More often than not, the power generation systems are subjected to faults of this kind, and hence its extremely important for power engineers to be well-versed with the stability conditions of the system.
In general practice studies related to transient stability in the power system are done over a minimum period equal to the time required for one swing, which approximates to around 1 sec or even less. If the system is found to be stable during this first swing, its assumed that the disturbance will reduce in the subsequent swings, and the system will be stable after that as is the case. Now to mathematically determine whether a system is stable or not we need to derive the swing equation of
power system.

Swing Equation for Determining Transient Stability

swing equationIn order to determine the transient stability of a power system using swing equation, let us consider a synchronous generator supplied with input shaft power PS producing mechanical torque equal to TS as shown in the figure below. This makes the machine rotate at a speed of ω rad/sec and the output electromagnetic torque and power generated on the receiving end are expressed as TE and PE respectively.
When, the synchronous generator is fed with a supply from one end and a constant load is applied to the other, there is some relative angular displacement between the rotor axis and the stator
magnetic field, known as the load angle δ which is directly proportional to the loading of the machine. The machine at this instance is considered to be running under a stable condition.

Now if we suddenly add or remove load from the machine the rotor decelerates or accelerates accordingly with respect to the stator magnetic field. The operating condition of the machine now becomes unstable and the rotor is now said to be swinging w.r.t the stator field and the equation we so obtain giving the relative motion of the load angle δ w.r.t the stator magnetic field is known as the swing equation for transient stability of a power system.
Here for the sake of understanding, we consider the case where a synchronous generator is suddenly applied with an increased amount of electromagnetic load, which leads to instability by making PE less than PS as the rotor undergoes deceleration. Now the increased amount of the accelerating power required to bring the machine back to a stable condition is given by,

Similarly, the accelerating torque is given by,

Now we know that

(since T = current × angular acceleration)
Furthermore, angular momentum, M = Iω

But since on loading the angular displacement θ varies continuously with time, as shown in the figure below, we can write.

swing equation with angular position

Double differentiating the above equation w.r.t time, we get,

where angular acciletation

Thus we can write,

Now the electromagnetic power transmitted is given by,

Thus we can write,

This is known as the swing equation for transient stability in power system.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
Edwiin
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.