• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Fomula na Gine Matematika (Dukkan Tushen Mafi Yawan Mu'amala)

Electrical4u
Electrical4u
فیلڈ: Karkashin Kuliya da Dukkana
0
China

Formulas For Electrical Engineering

Na kimiyyar maimakonin kasa yana da muhimmanci wajen fahimta, kudin da amfaniya na tsohon abubuwan maimakonin kasa da ake amfani da su a cikin ranar.

Yana gaba da duk biyuwar masu muhimmanci kamar; sissobin kasa, maimakonin kasa, kudin kasa, ilimin kimiyya, tsarin magana, telekominikaci, cin kasa, artificial intelligence, da sauransu.

Babban kimiyyar wannan yana da muhimmiyar formulas da adadin (laws) da ake amfani da su a duk abubuwa kamar haɗa kan circuits da amfani da abubuwan maimakonin kasa don yaɗa waɗannan al'umma.

Duk formulas da ake amfani da su a duk kimiyyoyin maimakonin kasa suna nufin da za su bayyana a nan.

Voltage

Voltage yana nufin farko da shi da a kan biyuwar kasa per unit charge daga biyu zuwa biyu a cikin electric field. Unit ta voltage shine Volt (V).

(1) \begin{equation*} Voltage (V) = \frac{Work done (W)}{Charge (Q)} \end{equation*}

Daga equation ta haka, unit ta voltage shine \frac{joule}{coulomb}

Current

Jama'a na dacewa ake kira wani yadda abubuwa masu karamin zafi (daidai da ions) suka yi hanyar zuba. Kuma ana kiran shi da yadda hanyar zuba masu karamin zafi suka yi hanyar zuba a kan alama mai zuba.

Ma'ana mai jama'a na dacewa shine ampere (A). Kuma ana sanya jama'a na dacewa da rubutu 'I' ko 'i'.

(2) \begin{equation*} I = \frac{dQ}{dt} \end{equation*}

Gimba

Gimba ko gimba na tashar jama'a ta kira yadda ake bincika tsarin jama'a. Gimba ta kira da ohm (Ω).

Gimba ta karamin zuba ta kira da faɗin material, kuma ta kira da sauran cikin material.

  \[ R \propto \frac{l}{a} \]

(3) \begin{equation*}  R = \rho \frac{l}{a} \end{equation*}

Daga, \rho = sabbin da karkashin (specific resistance ko resistivity ta material mai gini)

A cikin hukumar ohm;

  \[ V \propto I \]

(4) \begin{equation*} Voltage \, V = \frac{I}{R} \, Volt \end{equation*}

Daga, R = Resistance of conductor (Ω)

(5) \begin{equation*} Current \, I = \frac{V}{R} \, Ampere \end{equation*}

(6) \begin{equation*} Resistance \, R = \frac{V}{I} Ohm \end{equation*}

Karamin Noma

Noma shi ne tarihin karamin zafi da ya gama da karamin noma a kan lokacin.

(7) \begin{equation*} P = \frac{dW}{dt} \end{equation*}

Don Sistem DC

(8) \begin{equation*} P = VI \end{equation*}

\begin{equation*} P = I^2 R \end{equation*}

Don Wata a Tsakiyar Fasa

10) \begin{equation*} P = VI cos \phi \end{equation*}

(11) \begin{equation*} P = I^2 R cos \phi \end{equation*}

(12) \begin{equation*} P = \frac{V^2}{R} cos \phi \end{equation*}

Don nan zabe mai tsawon uku

(13) \begin{equation*} P = \sqrt{3} V_L I_L cos \phi \end{equation*}

(14) \begin{equation*} P = 3 V_ph I_ph cos \phi \end{equation*}

(15) \begin{equation*} P = 3 I^2 R cos \phi \end{equation*}

(16) \begin{equation*} P = 3 \frac{V^2}{R} cos \phi \end{equation*}

Faktor Gudummawa

Faktor gudummawa yana da muhimmanci a cikin na'urar AC. An kawo shi a matsayin tarihi daga zafi mai gudummawa da take sauka a kan tafkin zuwa zafi mai fata da ita a kan tafki.

(17) \begin{equation*} Power \, Factor Cos\phi= \frac{Active \, Power}{Apparent \, Power} \end{equation*}

Faktor gudummawan da taɗa tsarin lambar da ke da muhimmanci a cikin tsakiyar -1 zuwa 1. Idan abin da ake saka ya fi shi ne a kan -1, idan abin da ake saka ya fi shi ne a kan 1.

Tsari

Tsari yana nufin darasi na wata lokaci. Ana kiran shi da f daidai a Hertz (Hz). Wata Hertz yana nufin wata darasa a shekara.

Akwai tsari masu ƙarfin 50 Hz ko 60 Hz.

Lokacin da ya ɗauka yana nufin lokaci da ke buƙaci wata darasa, ana kiran shi da T.

Tsari yana ƙaramin lokacin da ya ɗauka (T).

(18) \begin{equation*} F \propto \frac{1}{T} \end{equation*}

Abu Tsarin Tsari

Abu tsarin tsari yana nufin ɗalilin da ke daga ɗaya zuwa ɗaya na abubuwa masu hanyar da suka faru (duka ɗaya zuwa ɗaya na mafi tsawo ko ɗaya zuwa ɗaya na zero).

Ana kiran shi da tarihi mai tsari da tsarin tsari don alamar sinusoidal.

(19) \begin{equation*} \lambda = \frac{v}{f} \end{equation*}

Kapasitansi

Kadaka shi aiki na kasa a tsakiyar elektrikiduwa a lokacin da sanya ta gane. Ingantaccen kapasitansa a tsakiyar elektrikiduwa ana nufin kapasitansi.

Karamin shi a kan kapasitansa ya shafi mai shirya da zama a kan kapasitansa da ke faruwar sanya ta gane.

 \[ Q \propto V\]

  \[ Q = CV \]

(20)\begin{equation*} C = \frac{Q}{V} \end{equation*}

Kapasitansi yana iya girma da adadin kafin bayan duka (d), tsari na kafin (A), da kuma permissibiti na materialin dielectric.

(21) \begin{equation*} C = \frac{\epsilon A}{d} \end{equation*}

Indukta

An indukta yana tafi shirya karamin kware a cikin jirgin ruwa idan karamin kware ya haɗa saboda. Yawanci, indukta ta zama da sunan coil, reactor, ko chokes.

Yadda da take da inductance shine henry (H).

Inductance ita ce a hanyar yawan linkage na magnetic flux (фB), da karamin kware ta haɗa saboda indukta (I).

(22) \begin{equation*} L = \frac{\phi_B}{I} \end{equation*}

Karamin Kware

Karamin kware shine siffofin kima. Idan wani abu a gaba a cikin jirgin ruwa na electromagnetic, zai samu dogon.

Karamin kware zai iya zama maimaito (proton) da kuma nufin (electron), da ake bincike a cikin coulomb da ake nuna da Q.

Daya daga cikin coulomb ita ce yadda da ake bayarwa saboda karamin kware a cikin sekundi daya.

(23) \begin{equation*} Q = IT \end{equation*}

Farko Daidaita

Farko daidaita shi wani yanki ko kasa a kan abu da ya da damar daidai idan abin da suka da damar daidai zai samu fuskantar hukuma.

Farko daidaita tana da sunan farko daidaita ko kasa ko daidaita da ya da damar, an sanya da E.

Farko daidaita tana nufin tsari na fuskantar hukuma zuwa abin da ya da damar daidai.

(24)
\begin{equation*} E = \frac{F}{Q} \end{equation*}

Don jirgin daidaita, yanayin bayyana daga fata zuwa fata ta gida tana nufin aikin da ake yi game da abin da ya da damar daidai Q don kawo daga fata ta gida zuwa fata ta biyu.


  \[ V = \frac{Work done}{charge} = \frac{Fd}{Q} = Ed \]

(25) \begin{equation*} E = \frac{V}{d} \end{equation*}

Yanayin Elektirik

Idan abu da yanayin elektirik ya kawo a cikin yanayin elektirik na abu daidai, yana samu yanayi a gaba hukuma na Coulomb.

Coulomb’s Law.png

Kamar yadda ake nuna a fayilin, an yi abu da yanayin elektirik a cikin al'umma. Idan abubuwa masu yanayin elektirik daidai, abubuwa suna dace. Amma idan abubuwa suka da yanayin elektirik daban-daban, abubuwa suna juye.

A gaba hukuma na Coulomb,

(26) \begin{equation*} F = \frac{Q_1 Q_2}{4 \pi \epsilon_0 d^2 } \end{equation*}

A cikin hukumomin Coulomb, tushen daidaitar lura daidai ita ce;

  \[ E = \frac{F}{Q} = \frac{kQq}{Qd^2} \]

(27) \begin{equation*} E = \frac{kq}{d^2} \end{equation*}

Lura daidai

A cikin hukumomin Gauss, tushen daidaitar lura daidai ita ce;

(28) \begin{equation*} \phi = \frac{Q}{\epsilon_0} \end{equation*}

Machin DC

Back EMF

(29) \begin{equation*} E_b = \frac{P \phi NZ}{60A} \end{equation*}

Kashe a Machin DC

Kashe na koper

Kashe na koper yana faru saboda cikakken karamin wadanda. Kashe na koper tana da muhimmanci sama da karamin karamin da ke gudanar da wadanda, kuma ana kiran shi da I2R loss ko ohmic loss.

Kashe na koper na armature: I_a^2 R_a

Kwanciyar zafi na shunt: I_{sh}^2 R_{sh}

Kwanciyar zafi na series: I_{se}^2 R_{se}

Kwanciyar zafi a interpole: I_a^2 R_i

Kwanciyar zafi na brush contact: I_a^2 R_b

Kwanciyar Hysteresis

Kwanciyar hysteresis yana faru saboda kawo-karfi da ake yi a kan maimaitaccen armature.

(30) \begin{equation*} P_h = \eta B_{max}^1.6 f V \end{equation*}


Kwanciyar Eddy Current

Yadda yadda mai girma na iya kawo gida da yaɗuwar eddy current an sanar da eddy current loss.

(31) \begin{equation*} P_e = K B_{max}^2 f^2 t^2 V \end{equation*}

Transformer

EMF Equation

(32) \begin{equation*} E = 4.44 \phi_m f T \end{equation*}

Turns Ratio

(33) \begin{equation*} \frac{E_1}{E_2} = \frac{T_1}{T_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1} = a \end{equation*}

Kawalciya Kirkiyar Tsari

(34) \begin{equation*} V.R. = \frac{E_2 - V_2}{V_2} \end{equation*}

Motoci Na Tashin Karamin Kirkiya

Wakar Kirkiyar Dangane

(35) \begin{equation*} N_s = \frac{120f}{P} \end{equation*}

Tambayar Tauraro

Tauraro Da Yake Gwadawa

(36) \begin{equation*} T_d = \frac{k s E_{20}^2 R_2}{R_2^2 + s^2 X_{20}^2} \end{equation*}

Tafin Torque

(37) \begin{equation*} T_{sh} = \frac{3 E_{20}^2 R_2}{2 \pi n_s (R_2^2 + X_{20}^2) } \end{equation*}

EMF na Winding

(38) \begin{equation*} E_1 = 4.44 k_{w1} f_1 \phi T_1 \end{equation*}

(39) \begin{equation*} E_2 = 4.44 k_{w2} f_1 \phi T_2 \end{equation*}

Idan da,

Kw1, Kw2 = Mafi girman k'afin stator da rotor, babu wani

T1, T2 = Jumla na gurbin stator da rotor

Masu bayar: Electrical4u.

Ba ka shiga: Duk da ake iya harkar asalin, labari mai kyau zai iya ba da sharhi, idan akwai fitaccen bayanai za a duba.



Ba da kyau kuma kara mai rubutu!
Tambayar Da Yawanci
Kwanciyar Gaji: Yadda Kaɗi, Kungiyar Lami, ko Kyau?
Kwanciyar Gaji: Yadda Kaɗi, Kungiyar Lami, ko Kyau?
Kwakwalwa mai tsari, kisan gajeru (kisa masu), da kuma tashin kungiyoyi suna iya haifar da fuskantar sanyi na uku. Yakin cewa ake faɗa da haka shi ne abubuwan da suka buƙata don in yi aiki da ƙarfin baƙarƙarun.Kwakwalwa Mai TsariIdan kwakwalwa mai tsari ya haifar da fuskantar sanyi na uku, amma yadda ake kawo waɗanda suka ƙarewa bayanai ba ta ƙarfin ba. Ana ci gaba biyu: kwakwalwa mai tsari mai kofin kirkiro da kwakwalwa mai tsari mai bincike. A cikin kwakwalwa mai tsari mai kofin kirkiro, fuska
Echo
11/08/2025
Tattalin Tashin Gwargwadon Kirkiro da Kutubu a Fanni na Kirkiro
Tattalin Tashin Gwargwadon Kirkiro da Kutubu a Fanni na Kirkiro
1 Kula da MafitaKarkashin kawo karfi na iyakar gaban tashoshin jiragen. Ana iya kula da muhimmanci a cikin rike kisan gaban tashoshin jiragen. Saboda hakan ya danganta da kuma abu a yi a kan kula da tashoshin jiragen, ya kamata a bincika kula da kara da zama a kan kula da mafita da kuma rayuwarsa. Ba a gane da kula da kara ba za a iya kula da tasiri ga mafita, kuma ya kunshi matsaloli masu ma'ana a kan kula da mutanen mafi girma. Kulan za su iya tabbatar da abubuwa masu amfani da kuma kula da al
James
10/17/2025
Maidugwarsu vs Maidugwarsu Da Dauke | Tushen Kyakkyawan Yadda Ake Karamin ƙarin
Maidugwarsu vs Maidugwarsu Da Dauke | Tushen Kyakkyawan Yadda Ake Karamin ƙarin
Dinamo vs. Makamai Tsakiya: Fahimtar Yadda Ake DaceDinamo da makamai tsakiya suna cikin abubuwa biyu na manyan da suka da alamar tsakiya. Idan haka, suka dace da kuma yadda wannan alamun ya faru.Dinamo ya faru alamar tsakiya mafi girma idan tashar rafin ruwa ya gama shi. Amma, makamai tsakiya na faru alamar tsakiya mafi girma tun daga lokacin da aka magance, ba tabbas ba a bukatar kayan aiki.Makamai Tsakiya Tana Da Nufin?Makamai tsakiya shine abu ko mutum wanda ya faru alamar tsakiya—w
Edwiin
08/26/2025
Gimba Teguwa a Farko: Takaitaccen, Kyakkyawan da Ta Hanyar Dabbobi na Kirkiro Karamin Kirkiro
Gimba Teguwa a Farko: Takaitaccen, Kyakkyawan da Ta Hanyar Dabbobi na Kirkiro Karamin Kirkiro
Jiki na AikiKalmomin "jiki na aiki" yana nufin jiki mafi yawan da zan iya tabbatar da shi ba tushen gajarta ko fitaccen kasa, domin ya ba da inganci, hanyar da aiki masu sauƙi, da kuma tushen aiki da tushen magangan.Don tashidancin jiki zuwa wurare da dama, ita ce babban yadda ake amfani da jiki mafi yawa. A cikin gwamnatin AC, wajen cewa muhimmancin kusa da kusa mai yawa shine abubuwan da ke bukata ga tattalin arziki. Fiye, tashidancin jiki mai yawa suna da karfi da yake da shi bayan tashidanci
Encyclopedia
07/26/2025
Aika tambaya
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.