Rotary Variable Differential Transformer (RVDT)

Encyclopedia
04/10/2025

Rotary Variable Differential Transformer (RVDT)

The Rotary Variable Differential Transformer (RVDT) is an electromechanical transducer that transforms mechanical motion into an electrical signal. It comprises a rotor and a stator. The rotor is linked to the conductor, while the stator houses the primary and secondary windings.

The circuit of the Rotary Variable Differential Transformer (RVDT) is shown in the figure below. The working principle of the RVDT is similar to that of the Linear Variable Differential Transformer (LVDT). The only difference lies in that the LVDT uses a soft iron core to measure the displacement, while the RVDT utilizes a cam-shaped core that rotates between the primary and secondary windings with the aid of a shaft.

Theory of RVDT

ES1 and ES2 are the secondary voltages, and they change with the angular displacement of the shaft.

image.png

The G is the sensitivity of the RVDT. The secondary voltage is determined by the help of equation shown below.

image.png

The difference between ES1 – ES2 gives a proportional voltage.

image.png

The sum of the voltage is given by constant C.

image.png

Operation of Linear Variable Differential Transformer (LVDT)

When the core is in the null position, the output voltages of the secondary windings S1 and S2 are equal in magnitude but opposite in direction. The net output at the null position is zero. Any angular displacement from the null position will result in a differential output voltage. The angular displacement is directly proportional to the differential output voltage. The response of the Rotary Variable Differential Transformer (RVDT) is linear.

插图..jpg

When the shaft rotates in a clockwise direction, the differential output voltage of the transformer increases. Conversely, when the shaft rotates in an anti - clockwise direction, the differential output voltage decreases. The magnitude of the output voltage depends on both the angular displacement of the shaft and its direction of rotation.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

In which directions will dry-type transformers develop in the future?
In which directions will dry-type transformers develop in the future?
By Echo, 12 Years in the Electrical IndustryHi everyone, I'm Echo, and I've been working in the electrical industry for 12 years.From my early days doing commissioning and maintenance in distribution rooms, to later participating in electrical system design and equipment selection for large-scale projects, I’ve witnessed how dry-type transformers have evolved from traditional tools into smarter, greener devices.Recently, a new colleague asked me:“What’s the current state of dry
Echo
07/02/2025
Installation and Commissioning of 10kV Dry-Type Transformers
Installation and Commissioning of 10kV Dry-Type Transformers
By James, 10 Years of Electrical Equipment Maintenance ExperienceHi everyone, I’m James, and I’ve been working in electrical equipment fault repair for 10 years.Over the past decade, I’ve worked in factories, substations, and distribution rooms of all sizes, involved in the installation, commissioning, maintenance, and troubleshooting of dry-type transformers. Dry-type transformers are among the most common electrical devices we deal with on a daily basis.Today, a new colleague
James
07/01/2025
What are the reasons for low insulation at the low-voltage side of a dry-type transformer?
What are the reasons for low insulation at the low-voltage side of a dry-type transformer?
Hi everyone, I’m Felix, and I’ve been working in electrical equipment fault repair for 15 years.Over these years, I’ve traveled across factories, substations, and distribution rooms all over the country, troubleshooting and repairing all kinds of electrical equipment. Dry-type transformers are among the most common devices we deal with.Today, a friend asked me:“What does it mean when the low-voltage side of a dry-type transformer has low insulation resistance?”Great
Felix Spark
07/01/2025
What tests are required for dry-type transformers?
What tests are required for dry-type transformers?
1 Pre - commissioning InspectionAs a front - line tester, before formally commissioning a dry - type transformer, I need to carry out a comprehensive and systematic inspection. First, I conduct a visual inspection of the transformer body and its accessories, carefully checking for mechanical damage or deformation. Then, I check whether the leads of the high - and low - voltage windings are firmly connected and whether the bolt tightening torque meets the standard requirements (usually 40 - 60N&m
Oliver Watts
07/01/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!