A cikin cut set matrix a cikin graph theory, zan iya koyar da fundamental cut-set matrix. Cut-set yana wani abu mai tsarki na fadada shiga ta connected graph inda ake samun wannan fadada shiga daga graph, tana ba da hakan ya fara zuwa biyu masu sunayen da ake kira sub-graphs, kuma cut set matrix tana da ita ce mafarin da ake samu bayan baya daya a lokaci. Cutset matrix tana nufin da symbol [Qf].

Biyo masu sunayen suka samu daga graph tare da cut-sets da suka san [1, 2, 5, 6].
Don haka, a matsayin haka za mu iya cewa fundamental cut set na wani graph da tree tana da cut-set da take samu waɗanda suka fi twig da links. Twigs suna cikin shiga ta tree da links suna cikin shiga ta co-tree.
Don haka, yawan cutset yana da kyau da yawan twigs.
[Yawan twigs = N – 1]
Inda, N yana nufin yawan nodes na graph ko tree da aka sanya.
Orientation na cut-set yana da kyau da orientation na twig, kuma yana ake nuna da positive.
Akwai wasu adadin da mutum ya kamata a yi a lokacin da ya koya cut-set matrix. Adadin su ne:
Sanya graph na network ko circuit (idammin da aka bayar).
Sanyi tree. Shiga ta tree zai a cikin twigs.
Sanya fadada shiga ta graph da dotted line. Wadannan shiga zai a cikin links.
Har shiga ko twig na tree zai a gina independent cut-set.
Kara matrix da rows kamar cut-set da columns kamar branches.
| Branchase ⇒ | 1 | 2 | 3 | . | . | b | |
| Cutsets | |||||||
| C1 | |||||||
| C2 | |||||||
| C3 | |||||||
| . | |||||||
| . | |||||||
| Cn | |||||||
n = yawan cut-set.
b = yawan branches.
Qij = 1; idan branch J yana cikin cut-set da orientation sama da tree branch.
Qij = -1; idan branch J yana cikin cut-set da orientation mafi girma da branch na tree.
Qij = 0; idan branch J bai cikin cut-set ba.
Misali 1
Kara cut-set matrix na graph na biyu.
Amsa:
Step 1: Sanya tree na graph na biyu.
Step 2: Tada cut-set. Cut-set zai a cikin node da ke da waɗanda twig mai karamin links.
Hakan C2, C3 da C4 su ne cut-sets.
Step 3: Kara matrix.