चुंबकीय द्विध्रुव आघूर्ण
एक ही बाह्य चुंबकीय क्षेत्र में प्रदर्शित होने पर विभिन्न सामग्रियाँ अत्यधिक विभिन्न प्रतिक्रियाएँ प्रदर्शित कर सकती हैं। इसके अंतर्निहित कारणों को समझने के लिए, हमें पहले यह समझना होगा कि चुंबकीय द्विध्रुव चुंबकीय व्यवहार को कैसे नियंत्रित करते हैं। यह समझ चुंबकीय द्विध्रुव आघूर्ण के अध्ययन से शुरू होती है।
चुंबकीय द्विध्रुव आघूर्ण, जिसे आमतौर पर चुंबकीय आघूर्ण के रूप में सरलता से उल्लेख किया जाता है, विद्युत चुंबकत्व में एक मौलिक अवधारणा है। यह एक शक्तिशाली उपकरण प्रदान करता है जिससे एक धारा-वाही लूप और एक समान चुंबकीय क्षेत्र के बीच की प्रतिक्रिया को समझना और मापना संभव होता है। धारा-वाही लूप का चुंबकीय आघूर्ण, जिसका क्षेत्र A है और जो धारा I ले जाता है, इस प्रकार परिभाषित किया गया है:

ध्यान दें कि क्षेत्र को एक सदिश के रूप में परिभाषित किया गया है, जिससे चुंबकीय आघूर्ण भी एक सदिश मात्रा बन जाता है। दोनों सदिश एक ही दिशा में होते हैं।
चुंबकीय आघूर्ण की दिशा लूप के समतल के लंबवत होती है। यह दायें हाथ के नियम के द्वारा पाई जा सकती है—अगर आप अपने दायें हाथ की उंगलियों को धारा प्रवाह की दिशा में मुड़ाते हैं, तो आपका अंगूठा चुंबकीय आघूर्ण सदिश की दिशा दिखाता है। यह चित्र 1 में दिखाया गया है।

लूप का चुंबकीय आघूर्ण केवल इसके माध्यम से प्रवाहित होने वाली धारा और इसके द्वारा घेरे गए क्षेत्र पर निर्भर करता है। यह लूप के आकार से प्रभावित नहीं होता है।
टोक और चुंबकीय आघूर्ण
चित्र 2 देखें, जो एक धारा-वाही लूप को दिखाता है जो एक समान चुंबकीय क्षेत्र में स्थित है।

ऊपर दिखाए गए चित्र में:
I धारा को दर्शाता है।
B चुंबकीय क्षेत्र सदिश को दर्शाता है।
u चुंबकीय आघूर्ण को दर्शाता है।
θ चुंबकीय आघूर्ण सदिश और चुंबकीय क्षेत्र सदिश के बीच कोण को दर्शाता है।
चूँकि लूप के विपरीत तरफ़ लगने वाली बल एक दूसरे को संतुलित करते हैं, लूप पर कुल बल शून्य हो जाता है। फिर भी, लूप पर एक चुंबकीय टोक लगता है। लूप पर लगने वाले इस टोक का परिमाण इस प्रकार दिया जाता है:
समीकरण 2 से हम स्पष्ट रूप से देख सकते हैं कि टोक (t) चुंबकीय आघूर्ण से सीधे संबंधित है। यह इसलिए है क्योंकि चुंबकीय आघूर्ण एक चुंबक की तरह कार्य करता है; जब इसे एक बाह्य चुंबकीय क्षेत्र में रखा जाता है, तो यह एक टोक का अनुभव करता है। यह टोक हमेशा लूप को स्थिर संतुलन स्थिति की ओर घुमाने की प्रवृत्ति रखता है।
जब चुंबकीय क्षेत्र लूप के समतल के लंबवत होता है (यानी,θ=0^o ), तो स्थिर संतुलन प्राप्त होता है। अगर लूप को इस स्थिति से थोड़ा घुमाया जाता है, तो टोक लूप को संतुलन स्थिति में वापस लाने के लिए कार्य करता है। टोक भी जब θ=180^o होता है, शून्य होता है। हालांकि, इस मामले में, लूप एक अस्थिर संतुलन में होता है। θ=180^o से थोड़ा घुमाने पर टोक लूप को इस बिंदु से दूर और θ=0^o की ओर घुमाने की प्रवृत्ति रखता है।
चुंबकीय आघूर्ण क्यों महत्वपूर्ण है?
कई उपकरण धारा-वाही लूप और चुंबकीय क्षेत्र के बीच की प्रतिक्रिया पर निर्भर करते हैं। उदाहरण के लिए, विद्युत मोटर द्वारा उत्पन्न टोक, मोटर के चुंबकीय क्षेत्र और धारा-वाही चालकों के बीच की प्रतिक्रिया पर आधारित होता है। इस प्रतिक्रिया के दौरान, चालकों के घूमने के साथ उर्जा बदलती है।
चुंबकीय आघूर्ण और बाह्य चुंबकीय क्षेत्र के बीच की प्रतिक्रिया ही हमारे चुंबकीय प्रणाली में उर्जा का उत्पादन करती है। इन दो सदिशों के बीच का कोण उर्जा (U) की मात्रा को निर्धारित करता है, जैसा कि निम्नलिखित समीकरण में दिखाया गया है:

निम्नलिखित में कुछ महत्वपूर्ण विन्यासों के लिए संचित ऊर्जा के मान प्रस्तुत किए गए हैं:
जब θ=0^o , तो प्रणाली एक स्थिर संतुलन स्थिति में होती है, और संचित ऊर्जा अपना न्यूनतम मान, U=-uB प्राप्त करती है।
जब θ=90^o , तो संचित ऊर्जा U=0 तक बढ़ जाती है।
जब θ=180^o, तो संचित ऊर्जा अपना अधिकतम मान, U=uB प्राप्त करती है। यह विशेष स्थिति अस्थिर संतुलन स्थिति को दर्शाती है।
परमाणु मॉडल द्वारा नेट चुंबकीय आघूर्ण की समझ
चुंबकीय सामग्रियों के चुंबकीय क्षेत्र के उत्पादन को समझने के लिए, क्वांटम यांत्रिकी में गहराई से प्रवेश करना आवश्यक है। हालांकि, चूंकि यह विषय इस लेख के दायरे से बाहर है, हम अभी भी चुंबकीय आघूर्ण और शास्त्रीय परमाणु मॉडल की अवधारणा का उपयोग करके बाह्य चुंबकीय क्षेत्र के साथ सामग्रियों की प्रतिक्रिया की मूल्यवान जानकारी प्राप्त कर सकते हैं।
यह मॉडल एक इलेक्ट्रॉन को परमाणुक नाभिक के चारों ओर घूमते हुए और अपने अक्ष के चारों ओर घूमते हुए दिखाता है, जैसा कि चित्र 3 में स्पष्ट रूप से दिखाया गया है।

इलेक्ट्रॉन, परमाणुओं और वस्तुओं का नेट चुंबकीय आघूर्ण
इलेक्ट्रॉन की कक्षीय गति एक छोटे धारा-वाही लूप की तरह होती है। इस परिणामस्वरूप, यह एक चुंबकीय आघूर्ण (चित्र में (u1) द्वारा दर्शाया गया है) उत्पन्न करता है। इसी तरह, इलेक्ट्रॉन की घूर्णन से भी एक चुंबकीय आघूर्ण (u2) उत्पन्न होता है। इलेक्ट्रॉन का नेट चुंबकीय आघूर्ण इन दो चुंबकीय आघूर्णों का सदिश योग होता है।
एक परमाणु का नेट चुंबकीय आघूर्ण उसके सभी इलेक्ट्रॉनों के चुंबकीय आघूर्णों का सदिश योग होता है। हालांकि, परमाणु में प्रोटॉन भी एक चुंबकीय द्विध्रुव रखते हैं, लेकिन इलेक्ट्रॉनों की तुलना में उनका समग्र प्रभाव आमतौर पर नगण्य होता है।
एक वस्तु का नेट चुंबकीय आघूर्ण उसमें सभी परमाणुओं के चुंबकीय आघूर्णों का सदिश योग द्वारा निर्धारित किया जाता है।
चुंबकीकरण सदिश
सामग्री की चुंबकीय गुणधर्म उसके घटक कणों के चुंबकीय आघूर्णों पर निर्भर करते हैं। इस लेख में पहले से ही चर्चा की गई है कि ये चुंबकीय आघूर्ण छोटे चुंबक की तरह सोचे जा सकते हैं। जब एक सामग्री को एक बाह्य चुंबकीय क्षेत्र में रखा जाता है, तो सामग्री के अंदर के परमाणु चुंबकीय आघूर्ण बाह्य क्षेत्र के साथ इंटरक्ट करते हैं और एक टोक का अनुभव करते हैं। यह टोक चुंबकीय आघूर्णों को एक ही दिशा में रखने की प्रवृत्ति रखता है।
पदार्थ की चुंबकीय स्थिति दो गुणों पर निर्भर करती है: पदार्थ में मौजूद परमाणु चुंबकीय आघूर्णों की संख्या और उनकी संरेखण की डिग्री। अगर छोटे धारा-वाही लूप द्वारा उत्पन्न चुंबकीय आघूर्ण यादृच्छिक रूप से दिशाओं में रखे गए हैं, तो वे एक दूसरे को रद्द कर देंगे, जिससे निरस्त नेट चुंबकीय क्षेत्र का परिणाम होगा। पदार्थ की चुंबकीय स्थिति का वर्णन करने के लिए, हम चुंबकीकरण सदिश की परिभाषा देते हैं। इसे पदार्थ के इकाई आयतन पर कुल चुंबकीय आघूर्ण के रूप में परिभाषित किया गया है:

जहाँ V पदार्थ का आयतन है।
जब पदार्थ को एक बाह्य चुंबकीय क्षेत्र में रखा जाता है, तो इसके चुंबकीय आघूर्ण संरेखित होने की प्रवृत्ति रखते हैं, जिससे चुंबकीकरण सदिश का परिमाण बढ़ जाता है। चुंबकीकरण सदिश की विशेषताएँ पदार्थ के परमाणु, फेरोमैग्नेटिक या डाइमैग्नेटिक होने पर भी प्रभावित होती हैं।
परमाणु और फेरोमैग्नेटिक सामग्रियाँ शाश्वत चुंबकीय आघूर्ण वाले परमाणुओं से बनी होती हैं। इसके विपरीत, डाइमैग्नेटिक सामग्रियों में परमाणु चुंबकीय आघूर्ण शाश्वत नहीं होते हैं।
कुल चुंबकीय क्षेत्र का पता लगाना: परमेयता और चुंबकीय संवेदनशीलता
मान लीजिए कि हम एक पदार्थ को एक चुंबकीय क्षेत्र में रखते हैं। पदार्थ के अंदर का कुल चुंबकीय क्षेत्र दो अलग-अलग स्रोतों से आता है:
बाह्य लगाया गया चुंबकीय क्षेत्र (B0)।
बाह्य क्षेत्र (Bm) के प्रतिक्रिया में पदार्थ का चुंबकीकरण।
पदार्थ के अंदर का कुल चुंबकीय क्षेत्र इन दो घटकों का योग है:

B0 एक धारा-वाही चालक द्वारा उत्पन्न किया जाता है; Bm चुंबकीय पदार्थ द्वारा उत्पन्न किया जाता है। यह दिखाया जा सकता है कि Bm चुंबकीकरण सदिश के अनुक्रमानुपाती है:

जहाँ μ0 एक नियतांक है जिसे स्वतंत्र अंतरिक्ष की परमेयता कहा जाता है। इसलिए, हमारे पास है:

चुंबकीकरण सदिश बाह्य क्षेत्र से निम्नलिखित समीकरण द्वारा संबंधित है: