Schematic Diagram of Gas Turbine Power Plant

03/19/2024

WechatIMG1775.jpeg

The main components of a gas turbine power plant are the

  1. compressor,

  2. regenerator,

  3. combustion chamber,

  4. gas turbine,

  5. alternator, and

  6. starting motor.

Compressor

Air compressor used in a gas turbine power plant is mainly of the rotary type. The air filter is attached at the inlet of the compressor where air gets filtered from dust. The rotary blades attached to the shaft push the air between stationary blocks, and consequently, the pressure of the air is increased. High pressure air is available at the outlet of the compressor.

Regenerator

There is always some heat presents in the exhaust gases in a gas turbine power plant. A portion of this heat is utilized in the regenerator. In regenerator, there is a net of fine tubes. The compressed air is passed through these fine tubes. The whole arrangement is enclosed in a vessel through which hot exhaust gases from turbine pass. During passing through the fine tubes, compressed air gets a portion of heat carried by exhaust gases. In this way, a significant portion of the heat of exhaust gases raises the temperature of the compressed air before it enters into the combustion chamber.

Combustion Chamber

After passing through the regenerator, the hot compressed air enters into the combustion chamber. In the combustion chamber, there are burners through which fuel oil is injected in the form of oil spray. Due to combustion of this hot oil spray inside the combustion chamber, the air attends a very high temperature. The temperature is about 3000oF. The compressed air mixed with combustion gases then cooled down to 1500oF to 1300oF before it is being delivered to the turbine for doing mechanical work there.

Schematic Diagram of Gas Turbine Power Plant

Alternator

The rotor of an alternator is attached to the same shaft of the turbine hence the alternator rotates along with the turbine and produces electrical energy.

Starting Motor

In gas turbine power plant the compressor, alternator, and turbine are attached to the same shaft. For starting the system, the compressor has to deliver pre-compressed air at starting. The shaft has to rotate to produce required compressed air for starting purpose. Hence, an alternative arrangement is required to run the compressor before the system is being started. This is done by a starting motor connected to the same shaft. A motor coupled with the main shaft supplies the required mechanical power for compressing air before starting.

Turbine

The compressed air mixed with combustion gases then enters in the turbine through nozzles. Here, the mixture of gases is suddenly expanded and it gains required kinetic energy to do mechanical work to rotate the turbine shaft (main shaft). In the turbine the temperature of the gases comes down to 900oF.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!