• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Is Your High-Pressure Heat Exchanger Always Failing? These 4 Common Faults You Must Know

Leon
Leon
Field: Fault Diagnosis
China

The magnitude of pressure drop directly affects the energy consumption of the unit
In hydrocracking units, most high-pressure heat exchangers are used in the recycle hydrogen circuit, where the pressure drop directly impacts the energy consumption of the recycle hydrogen compressor. For once-through hydrocracking units, the energy consumption of the recycle hydrogen compressor accounts for approximately 15%–30% of the total unit energy consumption. Therefore, the pressure drop across the high-pressure heat exchanger significantly influences the unit's overall energy consumption, and a lower pressure drop helps reduce operating costs.

Heat exchangers operate under severe conditions
Hydrocracking units operate under high-pressure, hydrogen-rich environments, imposing high requirements on equipment and materials. In some emergency situations, the reaction system must be depressurized at a rate of 0.7 MPa/min or 2.1 MPa/min. During such rapid depressurization, the pressure in the high-pressure heat exchanger drops quickly while the temperature rises rapidly, making leaks and fires more likely.

Larger scale increases manufacturing difficulty
With the rapid development of larger-scale units in recent years, high-pressure heat exchangers have grown in size, increasing manufacturing complexity. For thread-locking ring type heat exchangers, units with a diameter greater than 1600 mm are considered large-scale, presenting greater processing challenges. The tube sheet is prone to deformation, requires strict flatness, and is more susceptible to internal leakage. In the past two years, thread-locking ring type heat exchangers with a diameter of φ1800 mm have emerged, but their manufacturing difficulty is even higher, and the risk of internal leakage is greater.

High-Pressure Heat Exchanger.jpg

High content of nitrogen, sulfur, and other impurities leads to corrosion and coking
The nitrogen content in feedstock for hydrocracking units is mostly in the range of 500–2000 μg/g. Ammonia present in the reactor effluent combines with hydrogen sulfide or trace amounts of hydrogen chloride to form ammonium salts. The ammonium salt crystallization temperature in hydrocracking units is mainly between 160°C and 210°C. The higher the ammonia content in the effluent, the higher the crystallization temperature. Moreover, ammonium chloride crystallizes more easily than ammonium bisulfide.

Intermittent and continuous water injection is required to dissolve ammonium salts and prevent under-deposit corrosion and erosion corrosion that can lead to internal leakage or tube perforation in heat exchangers. Feedstocks for hydrocracking units may include deasphalted oil, FCC diesel, coker diesel/wax oil, straight-run diesel/wax oil, etc. The operating temperature of feed-effluent heat exchangers is typically between 190°C and 440°C. Aromatics, resins, and asphaltenes in the feedstock are highly prone to coking in high-pressure heat exchangers—the higher the impurity content, the more likely coking occurs. Coking reduces heat transfer efficiency and increases pressure drop; in severe cases, it can force the unit to shut down.

Give a tip and encourage the author!
Recommended
Three-Phase SPD: Types, Wiring & Maintenance Guide
Three-Phase SPD: Types, Wiring & Maintenance Guide
1. What Is a Three-Phase Power Surge Protective Device (SPD)?A three-phase power surge protective device (SPD), also known as a three-phase lightning arrester, is specifically designed for three-phase AC power systems. Its primary function is to limit transient overvoltages caused by lightning strikes or switching operations in the power grid, thereby protecting downstream electrical equipment from damage. The SPD operates based on energy absorption and dissipation: when an overvoltage event occ
James
12/02/2025
Neutral Grounding Methods for Conventional-Speed Railway Power Systems
Neutral Grounding Methods for Conventional-Speed Railway Power Systems
Railway power systems primarily consist of automatic block signaling lines, through-feeder power lines, railway substations and distribution stations, and incoming power supply lines. They provide electricity to critical railway operations—including signaling, communications, rolling stock systems, station passenger handling, and maintenance facilities. As an integral part of the national power grid, railway power systems exhibit distinct characteristics of both electrical power engineering and
Echo
11/26/2025
What are the safety precautions and guidelines for using AC load banks?
What are the safety precautions and guidelines for using AC load banks?
AC load banks are electrical devices used to simulate real-world loads and are widely applied in power systems, communication systems, automation control systems, and other fields. To ensure personal and equipment safety during use, the following safety precautions and guidelines must be observed:Select an appropriate AC load bank: Choose an AC load bank that meets actual requirements, ensuring its capacity, voltage rating, and other parameters satisfy the intended application. Additionally, sel
Echo
11/06/2025
What should be noted when installing a Type K thermocouple?
What should be noted when installing a Type K thermocouple?
Installation precautions for Type K thermocouples are critical to ensuring measurement accuracy and extending service life. Below is an introduction to the installation guidelines for Type K thermocouples, compiled from highly authoritative sources:1.Selection and Inspection Select the appropriate thermocouple type: Choose the right thermocouple based on the temperature range, medium properties, and required accuracy of the measurement environment. Type K thermocouples are suitable for temperatu
James
11/06/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.