
Miƙa da Maxwell Inductance Capacitance Bridge (da ake sani da Maxwell Bridge) shine wata tsarin yadda ake gina miƙa da Wheatstone bridge wanda ake amfani da ita don bincike inductance na cikin kabilu. Miƙa da Maxwell Bridge ya yi amfani da metodi na null deflection (ko kuma “bridge method”) don tabbatar da inductance mai ban sha'awa a cikin kabilu. Idan ake amfani da capacitor da resistor a matsayin komponenntoci, zai iya kira shi da sunan Maxwell-Wien bridge.
Hukumomin da ya yi shine hukumar phase angle mai kyau na inductive impedance zai iya bayarwa da phase angle mai hasu na capacitive impedance idan an sa ta a matsayin arm mai ban sha'awa, kuma cikin kabilu ya ci gaba (ya ni, ba da fasahohi a kan detector kuma ba da cashi da ke fitowa). Saboda haka, inductance mai ban sha'awa zai zama da shi a kan capacitance.

An samun biyu na neman miƙa da Maxwell: Maxwell’s inductor bridge, da Maxwell’s inductor capacitance bridge. A Maxwell’s inductor bridge, ana amfani da inductors da resistors. A Maxwell’s inductor capacitance bridge, an yi amfani da capacitor da kabilu.
Saboda biyu na nan miƙa da Maxwell Bridge ta haɗa da AC bridge, za a bayyana hukumomin da AC bridge tana yi kafin bayyana Maxwell Bridge.
AC Bridge na neman source, balance detector da sabon arms. A AC bridges, duka cikin sabon arms akwai impedance. AC bridges suka faruwa ne a matsayin ƙara battery na DC da galvanometer da ke amfani da shi a Wheatstone bridge da AC source da detector.
Su ne musamman muhimmanci don tabbatar da inductance, capacitance, storage factor, dissipation factor kamar haka.
Tana da ni a bayyana takaitaccen expression ga AC bridge balance. Wannan tushen ya bayyana AC bridge network:
Idan Z1, Z2, Z3 da Z4 su ne arms na bridge.
Idan ake cika a matsayin yanayin, fasahohi a kan b da d ya zama zero. Daga wannan, fasahohi a kan a zuwa d ya zama da a kan a zuwa b duk fassara da zamantakewa.
Saboda haka, muna samu daga figure e1 = e2
Daga equation 1, 2 da 3 muna samu Z1.Z4 = Z2.Z3 kuma idan ake ƙara impedance da admittance, muna samu Y1.Y4 = Y2.Y3.
Idan ake cika a matsayin yanayin, fasahohi a kan b da d ya zama zero. Daga wannan, fasahohi a kan a zuwa d ya zama da a kan a zuwa b duk fassara da zamantakewa.
Saboda haka, muna samu daga figure e1 = e2
Daga equation 1, 2 da 3 muna samu Z1.Z4 = Z2.Z3 kuma idan ake ƙara impedance da admittance, muna samu Y1.Y4 = Y2.Y3.
Idan ake cika a matsayin yanayin, fasahohi a kan b da d ya zama zero. Daga wannan, fasahohi a kan a zuwa d ya zama da a kan a zuwa b duk fassara da zamantakewa.
Saboda haka, muna samu daga figure e1 = e2
Daga equation 1, 2 da 3 muna samu Z1.Z4 = Z2.Z3 kuma idan ake ƙara impedance da admittance, muna samu Y1.Y4 = Y2.Y3.
Muna samu biyu na balanced equations wadanda ake samu ne a matsayin real da imaginary parts, wanda yana nufin cewa a AC bridge, biyu na relations (magnitude da phase) zai bukace a cikin lokacin. Biyu na equations suna nufin independent idan kawai variable element. Wannan variable zai iya inductor ko resistor.
Biyu na equations suna nufin independent of frequency, wanda yana nufin cewa ba a duba exact frequency na source voltage ba, kuma applied source voltage waveform ba da kyau ina buƙaci sinusoidal.
An samun biyu na neman Maxwell Bridges:
Maxwell’s inductor bridge
Maxwell’s inductor capacitance bridge
A bincike Maxwell’s inductance bridge. Wannan tushen ya bayyana circuit diagram na Maxwell’s inductor bridge.