• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What are the most efficient solar panels for use on roadways?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Solar panels used on roads often need to have high efficiency, durability and the ability to adapt to a variety of environmental conditions. At present, there are mainly several types of solar panels with high efficiency on the market:

Single crystalline silicon solar panels

Monocrystalline silicon (Mono-Si) solar panels are considered one of the most efficient types. Data as of 2021 show that the photoelectric conversion efficiency of monocrystalline silicon solar panels can reach 24%, which is the highest photoelectric conversion efficiency of all kinds of solar cells. Monocrystalline silicon cells usually have a high conversion efficiency, but the cost is also relatively high.

Polycrystalline silicon solar panels

Polycrystalline silicon (Poly-Si) solar panels are slightly less efficient than monocrystalline silicon, but the cost is lower and the cost performance is higher. The efficiency of polycrystalline silicon solar panels is usually between 17% and 20%.

Thin film solar panel

Thin Film solar panels include panels based on materials such as cadmium telluride (CdTe) and copper indium gallium selenide (CIGS). Although they are generally less efficient than monocrystalline and polysilicon solar panels, they have the advantage of being lightweight, flexible, and suitable for installation on curved or irregular surfaces. The efficiency of thin-film solar panels is generally between 10% and 15%, but some high-end products can be more efficient.

Specific road application

For road applications, in addition to the efficiency of solar panels, other factors need to be considered, such as:

  • Durability: Solar panels used on the road need to be able to withstand extreme conditions such as vehicle crushing, weather changes (such as rain, snow, high temperatures, etc.).

  • Safety: Solar panels installed on roads need to ensure that they do not pose a safety hazard to pedestrians or vehicles.

  • Integrated design: Solar panels used on roads often need to be closely integrated with pavement materials to form seamless connections, such as the solar panels in the middle of South Korea's highways that not only generate electricity but also prevent roads from freezing.

  • Maintenance costs: Solar panels used on roads need to be easy to maintain and overhaul to reduce long-term operating costs.

Example

  • Solar road in Normandy, France: France has laid a solar road in Tourouvre-au-Perche, a village in the Normandy region, using high-efficiency solar panels.

  • Solar bike path in the Netherlands: As early as 2014, the Netherlands built a solar bike path about 100 meters long, using efficient solar panels.

  • Australia's Solar Paving project: Australia plans to lay roads with solar panels, aiming to create the world's first "electronic road" that can provide wireless charging for electric vehicles.

Conclusion

For solar panels used on the road, monocrystalline silicon solar panels are usually one of the best options due to their high conversion efficiency. However, the specific choice of which type of solar panel needs to be determined according to the needs of the actual application scenario, including cost, durability, ease of installation and other factors. With the advancement of technology, more new materials and technologies may be applied to solar panels on the road in the future to improve efficiency and reduce costs.

Give a tip and encourage the author!
Recommended
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
4 Key Smart Grid Technologies for the New Power System: Innovations in Distribution Networks
4 Key Smart Grid Technologies for the New Power System: Innovations in Distribution Networks
1. R&D of New Materials and Equipment & Asset Management1.1 R&D of New Materials and New ComponentsVarious new materials serve as the direct carriers for energy conversion, power transmission, and operation control in new-type power distribution and consumption systems, directly determining operational efficiency, safety, reliability, and system costs. For instance: New conductive materials can reduce energy consumption, addressing issues such as energy shortage and environmental pol
Edwiin
09/08/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
1. What are the common faults of distributed photovoltaic (PV) power generation systems? What typical problems may occur in various components of the system?Common faults include inverters failing to operate or start due to voltage not reaching the startup set value, and low power generation caused by issues with PV modules or inverters. Typical problems that may occur in system components are burnout of junction boxes and local burnout of PV modules.2. How to handle common faults of distributed
Leon
09/06/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.