• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Motor Thermal Overload Protection

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Motor thermal overload protection set


Thermal overload protection is a safety mechanism that prevents the motor from overheating by detecting excessive current and stopping the motor.


Cause of overheating


When considering motor overheating, the first cause that comes to mind is overload. Mechanical overload causes the motor to consume a higher current, which leads to overheating. If the rotor is locked by external forces, consuming too much current, the motor will also overheat. Low supply voltage is another reason; The motor consumes more current to maintain torque. When one power supply phase fails, the single phase and the power supply are unbalanced, resulting in negative sequence current, which can also lead to overheating. When the motor accelerates to its rated speed, the sudden loss and recovery of voltage can lead to overheating, which consumes a large current.



Since thermal overload or overheating of the motor can lead to insulation failure and winding damage, for proper motor thermal overload protection, the motor should be protected from the following conditions


  • Mechanical overload

  • Motor shaft is blocked

  • Low supply voltage

  • Single-phase power supply

  • Power unbalance

  • Sudden loss and reconstruction of supply voltage


The most basic protection scheme of the motor is thermal overload protection, which mainly covers the protection of all the above situations. In order to understand the basic principle of thermal overload protection, let's look at the schematic diagram of the basic motor control scheme.


In the figure above, when the START push is closed, the start coil is energized through the transformer. When the starting coil is energized, the normally open (NO) contact 5 closes, so the motor obtains the supply voltage at its terminals and begins to rotate. The START coil also closes contact 4, energizing the start coil even if the Start button contact is released from its closed position.



 To stop the motor, there are several normally closed (NC) contacts in series with the starting coil, as shown in the figure. One of them is the STOP button contact. If the STOP button is pressed, this button contact will open and disconnect the continuity of the starting coil circuit, resulting in a power failure of the starting coil. 



Thus, contacts 5 and 4 return to their normal open positions. Then, in the absence of voltage at the motor terminals, it will eventually stop running. Similarly, any other NC contacts (1, 2, and 3), if opened, are connected in series with the starting coil; It will also stop the motor. These NC contacts are electrically coupled with various protective relays to stop the operation of the motor under different abnormal conditions


f37533a319f786320626fb5f0d1441af.jpeg


Another important point of motor thermal overload protection is the predetermined overload tolerance value of the motor. Each motor can operate for a period of time in excess of its rated load according to load conditions specified by the manufacturer. This relationship between motor load and safe operating time is shown in the thermal limit curve. Here is an example of such a curve.


Here the Y-axis or the vertical axis represents the allowable time in seconds, and the X-axis or the horizontal axis represents the overload percentage. It is clear from the curve that the motor can operate safely at 100% rated load for a long time without causing any damage due to overheating. It can operate safely for 1000 seconds at 200% of its normal rated load. It can operate safely for 100 seconds at 300% of normal rated load. 


It can operate safely for 600 seconds at 15% of its normal rated load. The top half of the curve indicates the normal operating conditions of the rotor, and the bottom half indicates the mechanical locking state of the rotor


3e74341d4f3d16ded26a8b6720277946.jpeg

7e07b7c9d6fe0766a1dd245ba3165ab2.jpeg

Thermal overload relay


The relay uses bimetal sheets that heat up and bend when the current is too high, breaking the circuit to stop the motor.


Thermal limiting curve


This curve shows how long the motor can operate at different overload levels without damage, helping to set protection limits.


RTD Advanced protection


Resistance temperature detectors (RTDS) provide precise motor protection by monitoring temperature changes and triggering protection measures.


Give a tip and encourage the author!
Recommended
What lightning protection measures are used for H61 distribution transformers?
What lightning protection measures are used for H61 distribution transformers?
What lightning protection measures are used for H61 distribution transformers?A surge arrester should be installed on the high-voltage side of the H61 distribution transformer. According to SDJ7–79 "Technical Code for Design of Overvoltage Protection of Electric Power Equipment," the high-voltage side of an H61 distribution transformer should generally be protected by a surge arrester. The grounding conductor of the arrester, the neutral point on the low-voltage side of the transformer, and the
Felix Spark
12/08/2025
How to Implement Transformer Gap Protection & Standard Shutdown Steps
How to Implement Transformer Gap Protection & Standard Shutdown Steps
How to Implement Transformer Neutral Grounding Gap Protection Measures?In a certain power grid, when a single-phase ground fault occurs on a power supply line, both the transformer neutral grounding gap protection and the power supply line protection operate simultaneously, causing an outage of an otherwise healthy transformer. The main reason is that during a system single-phase ground fault, the zero-sequence overvoltage causes the transformer neutral grounding gap to break down. The resulting
Noah
12/05/2025
110kV Transformer Zero-Sequence Protection: Issues & Improvement Measures
110kV Transformer Zero-Sequence Protection: Issues & Improvement Measures
Problems with Zero-Sequence Protection of 110 kV TransformersIn an effectively grounded system, the neutral-to-ground displacement voltage of a transformer is limited to a certain level, and the neutral-point gap protection does not operate. The purpose of installing gap protection is to prevent damage to transformer insulation caused by elevated zero-sequence voltage in non-effectively grounded systems. The discharge gap only operates when a single-phase ground fault occurs, all directly ground
Echo
12/03/2025
Chinese Protection Relay Earns IEC 61850 Ed2.1 Level-A Certification
Chinese Protection Relay Earns IEC 61850 Ed2.1 Level-A Certification
Recently, the NSR-3611 low-voltage protection and control device and the NSD500M high-voltage measurement and control device—both developed by a Chinese protection and control equipment manufacturer—successfully passed the IEC 61850 Ed2.1 Server Level-A certification test conducted by DNV (Det Norske Veritas). The devices have been awarded the international Level-A certification by the Utilities Communication Architecture International Users Group (UCAIug). This milestone marks the manufacturer
Baker
12/02/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.