Surge Impedance Loading or SIL

03/22/2024

What Is Surge Impedance Loading

Surge Impedance Loading is a very essential parameter when it comes to the study of power systems as it is used in the prediction of maximum loading capacity of transmission lines.
However before understanding SIL, we first need to have an idea of what is Surge Impedance (Zs). It can be defined in two ways one a simpler one and other a bit rigorous.
Method 1
It is a well known fact that a
long transmission lines (> 250 km) have distributed inductance and capacitance as its inherent property. When the line is charged, the capacitance component feeds reactive power to the line while the inductance component absorbs the reactive power. Now if we take the balance of the two reactive powers we arrive at the following equation

Capacitive VAR = Inductive VAR

Where,
V = Phase voltage
I = Line Current
Xc =
Capacitive reactance per phase
XL = Inductive reactance per phase
Upon simplifying

Where,
f = Frequency of the system
L = Inductance per unit length of the line
l = Length of the line
Hence we get,

This quantity having the dimensions of resistance is the Surge Impedance. It can be considered as a purely resistive load which when connected at the receiving end of the line, the reactive power generated by capacitive reactance will be completely absorbed by inductive reactance of the line.
It is nothing but the Characteristic Impedance (Zc) of a lossless line.

Method 2
From the rigorous solution of a
long transmission line we get the following equation for voltage and current at any point on the line at a distance x from the receiving end

Where,
Vx and Ix = Voltage and Current at point x
VR and IR = Voltage and Current at receiving end
Zc = Characteristic Impedance
δ = Propagation Constant

Z = Series impedance per unit length per phase
Y = Shunt admittance per unit length per phase
Putting the value of δ in above equation of voltage we get

Where,

We observe that the instantaneous voltage consists of two terms each of which is a function of time and distance. Thus they represent two travelling waves. The first one is the positive exponential part representing a wave travelling towards receiving end and is hence called the incident wave. While the other part with negative exponential represents the reflected wave. At any point along the line, the voltage is the sum of both the waves. The same is true for current waves also.
Now, if suppose the load impedance (ZL) is chosen such that ZL = Zc, and we know

Thus

and hence the reflected wave vanishes. Such a line is termed as infinite line. It appears to the source that the line has no end because it receives no reflected wave.
Hence, such an impedance which renders the line as infinite line is known as surge impedance.It has a value of about 400 ohms and phase angle varying from 0 to –15 degree for overhead lines and around 40 ohms for underground cables.

The term surge impedance is however used in connection with surges on the transmission line which may be due to lightning or switching, where the line losses can be neglected such that

Now that we have understood Surge Impedance, we can easily define Surge Impedance Loading.
SIL is defined as the power delivered by a line to a purely resistive load equal in value to the surge impedance of that line. Hence we can write

The unit of SIL is Watt or MW.
When the line is terminated by surge impedance the receiving end voltage is equal to the sending end voltage and this case is called flat voltage profile. The following figure shows the voltage profile for different loading cases.
surge impedance loading or sil
It should also be noted that surge impedance and hence SIL is independent of the length of the line. The value of surge impedance will be the same at all the points on the line and hence the voltage.
In case of a Compensated Line, the value of surge impedance will be modified accordingly as

Where, Kse = % of series capacitive compensation by Cse

KCsh = % of Shunt capacitive compensation by Csh

Klsh = % of shunt inductive compensation by Lsh

The equation for SIL will now use the modified Zs.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!