• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Hazards of Multi-Point Grounding Faults in Transformer Cores and How to Prevent Them

Rockwell
Field: Manufacturing
China

Hazards of Multi-Point Grounding Faults in Transformer Cores

During normal operation, transformer cores must not be grounded at multiple points. The windings of an operating transformer are surrounded by an alternating magnetic field. Due to electromagnetic induction, stray capacitances exist between the high-voltage and low-voltage windings, between the low-voltage winding and the core, and between the core and the tank.

The energized windings couple through these stray capacitances, causing the core to develop a floating potential relative to ground. Because the distances between the core, other metallic components, and the windings are unequal, potential differences arise among these components. When the potential difference between two points reaches a level sufficient to break down the insulation between them, intermittent spark discharges occur. These discharges can gradually degrade the transformer oil and solid insulation over time.

To eliminate this phenomenon, the core and tank are reliably bonded to maintain the same electrical potential. However, if the core or other metallic components become grounded at two or more points, a closed loop is formed between the grounding points, causing circulating currents. This leads to localized overheating, decomposition of insulating oil, and degradation of insulation performance. In severe cases, the core's silicon steel laminations can be burned out, resulting in a major failure of the main transformer. Therefore, the core of the main transformer must be, and can only be, grounded at a single point.

Causes of Core Grounding Faults

Transformer core grounding faults mainly include: short circuits of the grounding plate due to poor construction techniques or design; multi-point grounding caused by accessories or external factors; and grounding caused by metallic foreign objects (such as burrs, rust, welding slag) left inside the main transformer or by deficiencies in core manufacturing processes.

Types of Core Failures

There are six common types of transformer core failures:

  • Core contacting the tank or clamping structure. During installation, due to oversight, transport positioning pins on the tank cover were not flipped or removed, causing the core to contact the tank shell; clamping structure limbs touching the core column; warped silicon steel laminations touching the clamping limbs; insulating cardboard between the core feet and yoke falling off, causing the feet to contact the laminations; thermometer housing being too long and contacting the clamping structure, yoke, or core column, etc.

  • The steel bushing of the core bolt is too long, causing a short circuit with the silicon steel laminations.

  • Foreign objects in the tank cause local short circuits in the silicon steel laminations. For example, in a 31500/110 power transformer at a substation in Shanxi, multi-point core grounding was discovered, and a screwdriver with a plastic handle was found between the clamp and the yoke; in another substation, a 60000/220 power transformer was found, during a cover-lifting inspection, to have a 120mm-long copper wire.

  • Core insulation is damp or damaged, such as sludge and moisture accumulating at the bottom, reducing insulation resistance; damp or damaged insulation of clamps, support pads, or tank insulation (cardboard or wooden blocks), resulting in high-resistance multi-point grounding of the core.

  • Bearings of submersible oil pumps wear out, allowing metal powder to enter the tank and accumulate at the bottom. Under electromagnetic attraction, this powder forms a conductive bridge connecting the lower yoke to the support pads or tank bottom, causing multi-point grounding.

  • Poor operation and maintenance, with no scheduled maintenance performed.

Give a tip and encourage the author!
Recommended
Chinese Grid Technology Reduces Egyptian Power Distribution Losses
Chinese Grid Technology Reduces Egyptian Power Distribution Losses
On December 2nd, the South Cairo distribution network loss reduction pilot project in Egypt, led and implemented by a Chinese power grid company, officially passed the acceptance inspection by the South Cairo Electricity Distribution Company of Egypt. The comprehensive line loss rate in the pilot area decreased from 17.6% to 6%, achieving an average daily reduction of lost electricity of approximately 15,000 kilowatt-hours. This project is the first overseas distribution network loss reduction p
Baker
12/10/2025
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
A "2-in 4-out 10 kVsolid-insulated ring main unit" refers to a specific type of ring main unit (RMU). The term "2-in 4-out" indicates that this RMU has two incoming feeders and four outgoing feeders.10 kVsolid-insulated ring main unit are equipment used in medium-voltage power distribution systems, primarily installed in substations, distribution stations, and transformer stations to distribute high-voltage power to low-voltage distribution networks. They generally consist of high-voltage incomi
Garca
12/10/2025
What Is a Magnetic Levitation Transformer? Uses & Future
What Is a Magnetic Levitation Transformer? Uses & Future
In today’s rapidly advancing technological era, the efficient transmission and conversion of electric power have become continuous goals pursued across various industries. Magnetic levitation transformers, as an emerging type of electrical equipment, are gradually demonstrating their unique advantages and broad application potential. This article will thoroughly explore the application fields of magnetic levitation transformers, analyze their technical characteristics and future development tren
Baker
12/09/2025
How Often Should Transformers Be Overhauled?
How Often Should Transformers Be Overhauled?
1. Transformer Major Overhaul Cycle The main transformer shall undergo a core-lifting inspection before being put into service, and thereafter a core-lifting overhaul shall be performed every 5 to 10 years. Core-lifting overhaul shall also be carried out if a fault occurs during operation or if issues are identified during preventive tests. Distribution transformers operating continuously under normal load conditions may be overhauled once every 10 years. For on-load tap-changing transformers, t
Felix Spark
12/09/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.