กฎของโอห์มกล่าวว่ากระแสไฟฟ้าที่ไหลผ่านตัวนำใด ๆ ตัวนำ จะเป็นสัดส่วนโดยตรงกับความต่างศักยภาพ (แรงดันไฟฟ้า) ระหว่างปลายของตัวนำนั้น ๆ ภายใต้เงื่อนไขที่สภาพทางกายภาพของตัวนำไม่เปลี่ยนแปลง
อีกนัยหนึ่ง อัตราส่วนของความต่างศักยภาพระหว่างจุดสองจุดของตัวนำกับกระแสไฟฟ้าที่ไหลระหว่างจุดเหล่านั้นจะคงที่ ตราบเท่าที่สภาพทางกายภาพ (เช่น อุณหภูมิ เป็นต้น) ไม่เปลี่ยนแปลง
ทางคณิตศาสตร์ กฎของโอห์มสามารถเขียนได้ว่า
เมื่อนำค่าคงที่ของการสัดส่วน ซึ่งคือความต้านทาน R ในสมการข้างต้น เข้ามา เราจะได้ว่า
ที่ไหน,
R คือความต้านทานของตัวนำในหน่วยโอห์ม (
),
I คือกระแสไฟฟ้าที่ผ่านตัวนำในหน่วยแอมแปร์ (A),
V คือแรงดันไฟฟ้าหรือความต่างศักย์ที่วัดได้ข้ามตัวนำในหน่วยโวลต์ (V).
กฎของโอห์มสามารถใช้ได้กับทั้ง กระแสตรง (DC) และ กระแสสลับ (AC).
ความสัมพันธ์ระหว่าง ความต่างศักย์หรือแรงดันไฟฟ้า (V), กระแสไฟฟ้า (I) และ ความต้านทาน (R) ในวงจรไฟฟ้าถูกค้นพบครั้งแรกโดยนักฟิสิกส์ชาวเยอรมันชื่อจอร์จ ไซมอน โอห์ม
หน่วยของความต้านทานคือโอห์ม (
) ซึ่งตั้งชื่อตามจอร์จ ไซมอน โอห์ม
ตามคำนิยามของกฎของโอห์ม กระแสไฟฟ้าที่ไหลผ่านตัวนำหรือ ตัวต้านทาน ระหว่างสองจุดจะเป็นสัดส่วนตรงกับความต่างศักย์ (หรือแรงดันไฟฟ้า) ระหว่างตัวนำหรือตัวต้านทาน
แต่... อาจยากต่อการเข้าใจ
ดังนั้น มาทำความเข้าใจกฎของโอห์มให้มากขึ้นด้วยการใช้วิธีการเปรียบเทียบ
พิจารณาถังน้ำที่ตั้งอยู่บนความสูงเหนือพื้นดิน ที่มีท่อระบายน้ำอยู่ที่ด้านล่างของถังน้ำ ตามภาพด้านล่าง

แรงดันน้ำในปาสคาลที่ปลายท่อระบายน้ำเปรียบเสมือนแรงดันไฟฟ้าหรือความต่างศักย์ในวงจรไฟฟ้า
อัตราการไหลของน้ำในลิตรต่อวินาทีเปรียบเสมือนกระแสไฟฟ้าในคูลอมบ์ต่อวินาทีในวงจรไฟฟ้า
ข้อจำกัดในการไหลของน้ำ เช่น ช่องเปิดที่ตั้งอยู่ในท่อระหว่างสองจุด เป็นตัวแทนของตัวต้านทานในวงจรไฟฟ้า
ดังนั้น อัตราการไหลของน้ำผ่านช่องเปิดจำกัดจะเป็นสัดส่วนกับความต่างของแรงดันน้ำที่ขวางช่องเปิด
เช่นเดียวกัน ในวงจรไฟฟ้า กระแสไฟฟ้าที่ไหลผ่านตัวนำหรือตัวต้านทานระหว่างสองจุดจะเป็นสัดส่วนโดยตรงกับความต่างของแรงดันหรือความต่างศักย์ที่ขวางตัวนำหรือตัวต้านทาน
เราสามารถกล่าวได้ว่า การต้านทานที่เกิดขึ้นจากการไหลของน้ำขึ้นอยู่กับความยาวของท่อ วัสดุของท่อ และความสูงของถังน้ำที่ตั้งอยู่เหนือพื้นดิน
กฎของโอห์มทำงานในทำนองเดียวกันในวงจรไฟฟ้า ซึ่งการต้านทานทางไฟฟ้าที่เกิดขึ้นจากการไหลของกระแสขึ้นอยู่กับความยาวของตัวนำและวัสดุของตัวนำที่ใช้
การเปรียบเทียบแบบง่ายๆ ระหว่างวงจรไฮดรอลิกและวงจรไฟฟ้าเพื่ออธิบายการทำงานของกฎของโอห์มแสดงในภาพด้านล่าง


ตามที่แสดง ถ้าแรงดันน้ำคงที่และข้อจำกัดเพิ่มขึ้น (ทำให้น้ำไหลยากขึ้น) แล้ว อัตราการไหลของน้ำจะลดลง
เช่นเดียวกัน ในวงจรไฟฟ้า ถ้าแรงดันหรือความต่างศักย์คงที่และตัวต้านทานเพิ่มขึ้น (ทำให้กระแสไหลยากขึ้น) แล้ว อัตราการไหลของประจุไฟฟ้า หรือกระแสจะลดลง
ตอนนี้ ถ้าข้อจำกัดในการไหลของน้ำคงที่และแรงดันปั๊มเพิ่มขึ้น ความเร็วในการไหลของน้ำก็จะเพิ่มขึ้น
ในทำนองเดียวกัน ในวงจรไฟฟ้า ถ้าความต้านทานคงที่และศักย์ไฟฟ้าหรือแรงดันไฟฟ้าเพิ่มขึ้น ความเร็วในการไหลของประจุไฟฟ้า คือ กระแสไฟฟ้า จะเพิ่มขึ้น
ความสัมพันธ์ระหว่างศักย์ไฟฟ้าหรือความต่างศักย์ กระแสไฟฟ้า และความต้านทานสามารถเขียนได้สามวิธี
ถ้าเรารู้ค่าใดๆ สองค่า เราสามารถคำนวณค่าที่ไม่รู้ได้โดยใช้ความสัมพันธ์ของกฎของโอห์ม ดังนั้น กฎของโอห์มเป็นประโยชน์มากในการคำนวณทางอิเล็กทรอนิกส์และไฟฟ้า
เมื่อมีกระแสไฟฟ้าที่ทราบค่าไหลผ่านความต้านทานที่ทราบค่า ความต่างศักย์ที่เกิดขึ้นที่ความต้านทานสามารถคำนวณได้โดยใช้ความสัมพันธ์
เมื่อมีแรงดันที่ทราบค่าถูกนำไปใช้ที่ความต้านทานที่ทราบค่า กระแสไฟฟ้าที่ไหลผ่านความต้านทานสามารถคำนวณได้โดยใช้ความสัมพันธ์
เมื่อแรงดันที่ทราบค่าถูกนำไปใช้กับความต้านทานที่ไม่ทราบค่า และกระแสไฟฟ้าที่ไหลผ่านความต้านทานนั้นก็เป็นที่ทราบเช่นกัน ค่าของความต้านทานที่ไม่ทราบค่าสามารถคำนวณได้จากความสัมพันธ์
พลังงานที่ถ่ายโอนเป็นผลคูณระหว่างแรงดันไฟฟ้าและกระแสไฟฟ้า
1)
สูตรนี้เรียกว่าสูตรการสูญเสียแบบโอห์มหรือสูตรความร้อนจากการต้านทาน
จากนั้น แทน
ในสมการ (1) เราจะได้
จากความสัมพันธ์ดังกล่าว เราสามารถกำหนดพลังงานที่สูญเสียในตัวต้านทานได้หากทราบแรงดันและตัวต้านทาน หรือกระแสไฟฟ้าและตัวต้านทาน
เราสามารถกำหนดค่าตัวต้านทานที่ไม่ทราบค่าได้โดยใช้ความสัมพันธ์ดังกล่าวหากทราบแรงดันหรือกระแสไฟฟ้า
หากทราบสองตัวแปรใด ๆ จากพลังงาน แรงดัน กระแสไฟฟ้า และตัวต้านทาน เราสามารถกำหนดตัวแปรอื่น ๆ ได้โดยใช้กฎของโอห์ม
ข้อจำกัดบางประการของกฎของโอห์มได้รับการอภิปรายด้านล่างนี้
กฎของโอห์มไม่สามารถใช้กับตัวนำที่ไม่ใช่โลหะทั้งหมด เช่น สำหรับคาร์ไบด์ซิลิคอน ความสัมพันธ์จะเป็น
โดยที่ K และ m เป็นค่าคงที่และ m<1
กฎของโอห์มไม่สามารถใช้กับองค์ประกอบที่ไม่เป็นเชิงเส้นต่อไปนี้
ความต้านทาน
สารกึ่งตัวนำ
หลอดสุญญากาศ
สารละลายไฟฟ้า
(โปรดทราบว่าองค์ประกอบที่ไม่เป็นเชิงเส้นคือองค์ประกอบที่มีความสัมพันธ์ระหว่างกระแสไฟฟ้าและแรงดันไฟฟ้าไม่เป็นเชิงเส้น กล่าวคือ กระแสไฟฟ้าไม่ได้เป็นสัดส่วนโดยตรงกับแรงดันไฟฟ้าที่ใช้งาน)
กฎของโอห์มสามารถใช้ได้เฉพาะกับสายนำโลหะที่อุณหภูมิคงที่เท่านั้น หากอุณหภูมิเปลี่ยนแปลง กฎนี้จะไม่สามารถใช้ได้
กฎของโอห์มยังไม่สามารถใช้ได้กับวงจรทางเดียว โปรดทราบว่าวงจรทางเดียวประกอบด้วยองค์ประกอบทางเดียว เช่น ทรานซิสเตอร์ ไดโอด ฯลฯ องค์ประกอบทางเดียวคือองค์ประกอบที่อนุญาตให้กระแสไฟฟ้าไหลได้ในทิศทางเดียวเท่านั้น
สูตรพื้นฐานของกฎของโอห์มสรุปไว้ในรูปสามเหลี่ยมของโอห์มดังนี้

ตามที่แสดงในวงจรด้านล่าง กระแสไฟฟ้า 4 A กำลังไหลผ่านตัวต้านทาน 15 Ω จงหาแรงดันตกคร่อมวงจรโดยใช้กฎของโอห์ม
วิธีทำ:
ข้อมูลที่ให้มา:
และ ![]()
ตามกฎของโอห์ม
ดังนั้น โดยใช้สมการของโอห์ม เราได้ว่าแรงดันตกคร่อมวงจรคือ 60 โวลต์
ตามที่แสดงในวงจรด้านล่าง แรงดันไฟฟ้าที่จ่ายเข้าไปคือ 24 โวลต์ ผ่านความต้านทาน 12 โอห์ม หากระแสที่ไหลผ่านตัวต้านทานโดยใช้กฎของโอห์ม
![]()
วิธีทำ:
ข้อมูลที่กำหนดให้:
และ ![]()
ตามกฎของโอห์ม
ดังนั้น โดยใช้สมการของกฎของโอห์ม เราได้ว่ากระแสที่ไหลผ่านตัวต้านทานคือ 2 A
ตามวงจรที่แสดงด้านล่าง แรงดันไฟฟ้าที่จ่ายคือ 24 V และกระแสที่ไหลผ่านตัวต้านทานที่ไม่ทราบค่าคือ 2 A หาค่าตัวต้านทานที่ไม่ทราบโดยใช้กฎของโอห์ม
วิธีทำ:
ข้อมูลที่กำหนดให้:
และ ![]()
ตามกฎของโอห์ม
ดังนั้น ด้วยการใช้สมการของโอห์ม เราสามารถหาค่าความต้านทานที่ไม่ทราบค่าได้
.
การประยุกต์ใช้กฎของโอห์มบางอย่างรวมถึง:
คำนวณแรงดันไฟฟ้าหรือความต้านทานและกระแสไฟฟ้าที่ไม่ทราบค่าในวงจรไฟฟ้า
ใช้กฎของโอห์มในการกำหนดแรงดันภายในที่ลดลงข้ามส่วนประกอบอิเล็กทรอนิกส์ในวงจรอิเล็กทรอนิกส์
ใช้กฎของโอห์มในวงจรการวัดกระแสไฟฟ้าตรง โดยเฉพาะในแอมมิเตอร์ไฟฟ้าตรงที่ใช้ชันท์ความต้านทานต่ำเพื่อเบี่ยงเบนกระแส
แหล่งที่มา: Electrical4u
คำแถลง: ให้ความเคารพต่อเนื้อหาต้นฉบับ บทความที่ดีควรแบ่งปัน หากมีการละเมิดลิขสิทธิ์โปรดติดต่อเพื่อลบออก