Steam Turbine

03/19/2024

WechatIMG1767.jpeg

The steam turbine is a favourite prime mover in a steam power generating plants. The steam turbine may be of capacity from 5 megawatts 2000 megawatt.

The advantages of a steam turbine over a diesel engine are as follows.

  1. The size of a steam turbine is much smaller than that of an equivalent diesel engine. The size of a 30-megawatt steam turbine is same as a 5-megawatt diesel engine.

  2. Construction wise the steam turbine is much simpler than a diesel engine. The rotor shaft, blades, steam control valve are the three essential components of a steam turbine.

  3. steam turbine suffers from less vibration than that of diesel engine if the rotating parts of the system correctly installed and aligned.

  4. The speed of a steam turbine can be much higher than that of a diesel engine. The standard speed of a steam turbine used in an electrical generating station is 3600 RPM in USA and 3000 RPM in the UK whereas the highest standard speed of a diesel engine used for the same purpose is 200 RPM.

  5. Control of steam turbine is much simpler than that of a diesel engine. A control valve is utilised for the purpose. The valve is fitted at the inlet line of the steam. This control valve governs the flow of steam to the turbine. There is one stop valve installed before the control valve. The function of stop valve is to block the entire flow of steam to the turbine in the event of any abnormality. The stop valve is an emergency valve.

The steam enters into the turbine at high pressure and temperature. After doing the desired work of rotating the rotor the steam exhausts at much lower pressure and temperature. The steam may enter in the turbine at a pressure and temperature of 1800 Pa, and 1000oF respectively and the pressure and temperature of the exhausting steam may be 1 Pa and 100oF respectively.
Steam Turbine

Working Principle of Steam Turbine

In a reciprocating steam engine, pressurized steam acts on the piston causing mechanical movement of the piston. Ideally, no dynamic action of the steam is utilised in a reciprocating system. But in case of a steam turbine, the dynamic action of suddenly expanded steam is mainly utilised to perform mechanical work.

In a steam turbine the steam in the nozzles expands and hence it gains kinetic energy and losses its pressure. The steam gets kinetic energy during its expansion from its internal enthalpy. The blades of turbine obstruct the momentum of the steam and thereby force the stream to change its direction of flow. In other words, the momentum of steam causes a force on the turbine blades. We can say the momentum of expanding steam is the driving force of a steam turbine.

The expansion of steam and changing of direction of momentum may happen once in a single stage or multiple times in various stages depending upon types of turbine.

When there is only one provision of expansion of steam in a turbine and the pressure of steam remains uniform throughout the process after it is expanded through the nozzles, the turbine is called single stage impulse turbine. In impulse turbine high-pressure, high-temperature steam coming out from nozzle head expands and forms a steam jet which directly strikes on the moving blades, causing rotation of the turbine rotor.

There is another type of turbine in which the steam is expanded throughout the process. Here, the expansion of steam takes place when it passes through the turbine blades. During expansion, the enthalpy of steam converts into kinetic energy and thereby the turbine rotor rotates with propeller action.

This type of turbine is referred as reaction turbine. In this type of turbines, there are two sets of blades. One set is of fixed blades attached to the stationary parts of the turbine and another set is of moving blades attached to the rotor of the turbine. The expansion of steam takes place in the space formed by fixed and moving blades.

Normally a practical turbine has two important components nozzles and blades. The nozzle is a device fitted at the steam inlet of a turbine. The high-temperature, high-pressure steam with negligible kinetic energy gets expanded, losses pressure and hence gets sufficient kinetic energy to perform mechanical work with help of the nozzles.

The Blades of the turbines are also referred as deflectors. This is because the dynamics steam gets deflected when it strikes on the blades. The mechanical energy of expanding steam is extracted at turbine blades.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!