What is the difference between a dielectric and an insulator?

08/30/2025

Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.

Definition of Dielectric

A dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric field, it becomes polarized—a property in which the positive and negative charges within the material shift slightly in opposite directions. This polarization reduces the net electric field within the material, enabling it to store electrical energy.

image.png

Energy Storage and Dissipation in Dielectrics

The ability to store and dissipate electrical energy are key characteristics of dielectric materials. An ideal (perfect) dielectric has zero electrical conductivity. A common application of dielectrics is in capacitors. In a parallel-plate capacitor, the dielectric material placed between the plates becomes polarized, which increases the effective capacitance by reducing the electric field for a given charge.

Definition of Insulator

An insulator is a material that does not allow electric current to flow through it. Insulating materials lack free electrons because their atoms are bound together by strong covalent bonds. As a result, they exhibit very high electrical resistivity compared to other materials. Resistivity is an intrinsic property that indicates a material's strong opposition to the flow of electric charge.

image.png

Ebonite, paper, wood, and plastic are common examples of insulators.Almost all insulators can behave as dielectrics, but not all dielectrics are used primarily as insulators.

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Transformer Connection Sections
Transformer Connection Sections
Transformer Connection DesignationsThe transformer connection designation indicates the winding connection method and the phase relationship between the line voltages of the primary and secondary windings. It consists of two parts: letters and a number. The letters on the left denote the connection configurations of the high-voltage and low-voltage windings, while the number on the right is an integer from 0 to 11.This number represents the phase shift of the low-voltage winding's line voltage r
08/15/2025
Automatic Reclosing Scheme in Transmission Systems
Automatic Reclosing Scheme in Transmission Systems
Automatic Reclosing Scheme for Transmission SystemsThe automatic reclosing system is a series-connected network designed to reduce operating costs and enhance network reliability. Extra-high voltage (EHV) transmission lines are used to transmit large amounts of power, on the order of thousands of megawatts (MW), and therefore should not be interrupted at all costs. Although faults on these overhead lines are common, the power transmitted through them should not be interrupted for long periods du
08/07/2025
Transformer operation and maintenance
Transformer operation and maintenance
Transformer Operating TemperatureDuring operation, transformers generate copper losses and iron losses, both of which are converted into heat, causing the transformer’s temperature to rise. Most transformers in China use Class A insulation. Due to heat transfer characteristics, significant temperature differences exist between different components during operation: winding temperature is the highest, followed by the core, and then the temperature of the insulating oil (with upper-layer oil being
07/31/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!