What failure modes are possible in a transformer? How to identify and fix these failures?

09/02/2025

Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them:

  • Insulation Failure
    Identification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megger testing).
    Repair: Replace or repair damaged insulation materials as necessary, including bushings, leads, or entire windings. Investigate the root cause of insulation failure, which may be due to overheating, moisture ingress, or contamination.

  • Overheating
    Identification: Overheating may result from overloading, inadequate cooling, or loose connections. High temperatures can be detected using temperature sensors and infrared thermography.
    Repair: Reduce load within the transformer’s rated capacity, ensure proper cooling, and tighten loose connections. Consider redesigning the cooling system if necessary.

  • Core Saturation
    Identification: Core saturation occurs when the magnetic core reaches its limit, causing output waveform distortion. This can be observed through harmonic distortion in current and voltage waveforms.
    Repair: Install harmonic filters to mitigate core saturation. Evaluate whether a different core material or design is needed to prevent saturation.

  • Winding and Core Damage
    Identification: Visual inspection may reveal physical damage such as cracks, warping, or deformation in windings or the core.
    Repair: Repair or replace damaged components. Minor winding damage may be repaired locally, while severe damage may require rewinding or core replacement.

  • Oil Contamination and Degradation
    Identification: Oil analysis, including Dissolved Gas Analysis (DGA), can detect contaminants and gases generated during incipient faults. Darkened or foaming oil may also indicate problems.
    Repair: Replace contaminated oil and address the root cause of contamination. Consider upgrading to environmentally friendly and less flammable insulating fluids if applicable.

  • Bushings and Gasket Leaks
    Identification: Oil leaks can be visually observed, especially around bushings and gaskets.
    Repair: Repair or replace damaged bushings and gaskets. Tighten connections and ensure proper sealing.

  • Short Circuits
    Identification: Short circuits cause overcurrent and may produce distinctive sounds. Protective relays should trip due to the short circuit.
    Repair: Investigate the cause of the short circuit, repair damaged components, and replace any affected winding sections.

  • Tap Changer Problems
    Identification: Tap changer failures may cause voltage regulation issues or arcing in No-Load Tap Changers (NLTC). Monitoring voltage variations helps identify tap changer problems.
    Repair: Clean, lubricate, and maintain the tap changer. If significant issues persist, consider repairing or replacing it.

  • Moisture Ingress
    Identification: Moisture ingress can be detected through moisture content analysis. Visual inspection may also reveal signs of moisture damage, such as rust or corrosion.
    Repair: Address the source of moisture ingress, repair or replace damaged components, and maintain proper sealing.

Regular preventive maintenance is crucial, including visual inspections, oil sampling, and insulation resistance testing, to detect potential issues early. Additionally, consider employing condition monitoring techniques such as online monitoring and partial discharge testing to continuously assess transformer health. Timely maintenance and repairs help extend transformer lifespan and prevent costly failures.


Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

What factors need to be considered when designing a transformer?
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
Fault Analysis and Treatment of Oil-Immersed Transformers
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
08/29/2025
The Role of Transformers in Improving Power Quality
The Role of Transformers in Improving Power Quality
Transformers and Their Role in Enhancing Power QualityTransformers are fundamental components in power systems, playing a critical role in maintaining and improving electrical power quality. Power quality refers to the degree to which electrical energy conforms to defined parameters, including voltage stability, frequency, waveform integrity, and reliability. This article explores the significant contributions of transformers to power quality improvement.Voltage RegulationOne of the primary func
Vziman
08/19/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!