What is the difference between a cold cathode and a hot cathode in discharge lamps?

Encyclopedia
10/30/2024

The main differences between the cold cathode and hot cathode in discharge lamps are as follows:

Luminescence principle

  • Cold Cathode: Cold cathode lamps generate electrons through glow discharge, which bombard the cathode to produce secondary electrons, thus sustaining the discharge process. The cathode current is mainly contributed by positive ions, resulting in a small current, so the cathode remains at a low temperature.

  • Hot Cathode: A hot cathode lamp generates light by heating the cathode (usually a tungsten filament) to a high temperature, causing electrons on the surface of the cathode to be emitted due to thermal energy. The cathode current mainly relies on thermal electron emission, resulting in a higher current and consequently a higher cathode temperature.

Materials and Lifespan

  • Cold Cathode: Cold cathodes are typically made of pure metal sheets and do not have the issue of poisoning, resulting in a longer lifespan that can exceed 20,000 hours.

  • Hot Cathode: Hot cathodes typically employ tungsten filaments as the cathode body, coated with low work function metal oxides. Due to the potential for chemical and electrochemical poisoning of the oxide, their lifespan is generally only over 4000 hours.

Irradiation Intensity and Shape

  • Cold Cathode: Cold cathode lamps typically have a higher radiation intensity than hot cathode lamps, reaching more than 200uW/cm, which is more than twice that of hot cathode lamps. Additionally, cold cathode tubes can be made into various shapes, such as U-shaped, straight, O-shaped, or incense coil type, etc.

  • Hot Cathode: Hot cathode lamps have lower radiation intensity and typically have a more fixed shape.

Energy consumption

  • Cold Cathode: Due to the smaller current of cold cathode lamps and the ability to use direct current, cold cathode lamps are more energy-efficient than hot cathode lamps under the same sterilization effect.

  • Hot Cathode: Hot cathode lamps are relatively energy-intensive due to the higher current requirements and heating process.

Application Scenarios

  • Cold Cathode: Suitable for applications requiring precise shapes and high energy efficiency, such as portable disinfection devices like mobile phone sanitizers, toothbrush sanitizers, and disinfection packs.

  • Hot Cathode: Suitable for applications requiring high-intensity radiation and stability, such as general lighting and certain industrial applications.

In summary, cold cathodes and hot cathodes exhibit significant differences in terms of luminous principles, material selection, lifespan, irradiation intensity, shape, energy consumption, and application scenarios. These disparities make them suitable for different application domains.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Brief Introduction to Thermal Generating UnitsElectricity generation relies on both renewable and non - renewable energy resources. Thermal generating units represent a conventional approach to power production. In these units, fuels such as coal, nuclear energy, natural gas, biofuel, and biogas are combusted within a boiler.The boiler of a generating unit is an extremely complex system. In its simplest conception, it can be visualized as a chamber whose walls are lined with pipes, through which
Edwiin
06/06/2025
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
It is well-known that single-phase and three-phase systems are the most prevalent configurations for power transmission, distribution, and end-use applications. While both serve as fundamental power supply frameworks, three-phase systems offer distinct advantages over their single-phase counterparts.Notably, multi-phase systems (such as 6-phase, 12-phase, etc.) find specific applications in power electronics—particularly in rectifier circuits and variable frequency drives (VFDs)—wher
Edwiin
06/05/2025
How Many Poles and Towers are Situated Within a 1-km Span?
How Many Poles and Towers are Situated Within a 1-km Span?
The number of distribution poles and transmission towers within a 1-kilometer stretch of overhead lines varies significantly based on multiple factors, including voltage level, power line type, supporting structure, geographical location, local regulations, and specific grid requirements.In urban areas, distribution utility poles are typically positioned at closer intervals, while in rural regions, they are spaced farther apart. Additionally, the use of taller structures for higher-voltage trans
Edwiin
06/05/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!