• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Critical Clearing Angle

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

The critical clearing angle is defined as the maximum allowable variation in the load angle curve during a fault, beyond which system synchronism is lost if the fault is not cleared. In essence, when a fault occurs in an electrical system, the load angle begins to increase, putting the system at risk of instability. The specific angle at which clearing the fault restores system stability is referred to as the critical clearing angle.

For a given initial load condition, there exists a specific critical clearing angle. If the actual angle at which the fault is cleared exceeds this critical value, the system will become unstable; conversely, if it remains within the critical threshold, the system will maintain its stability. As illustrated in the diagram below, curve A represents the power - angle relationship under normal, healthy operating conditions. Curve B depicts the power - angle curve during a fault, while curve C shows the power - angle behavior after the fault has been isolated.

image.png

Here, γ1represents the ratio of the system reactance during normal (healthy) operation to the reactance when a fault occurs. Meanwhile, γ2 denotes the ratio of the steady - state power limit of the system after the fault has been isolated to that of the system under its initial operating condition.Regarding the transient stability limit, a key criterion is that two specific areas are equal, i.e., A1 = A2. To elaborate, the area under the curve adec (shaped like a rectangle) must match the area under the curve da'b'bce. This equality of areas serves as a fundamental condition for assessing whether the power system can maintain stability during and after a transient fault event, ensuring that the energy imbalances introduced by the fault can be properly managed to prevent system collapse.

image.png

Thus if γ1, γ2, and δ0 are known, the critical clearing angle δc can be determined.

Give a tip and encourage the author!
Recommended
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
1. What are the common faults of distributed photovoltaic (PV) power generation systems? What typical problems may occur in various components of the system?Common faults include inverters failing to operate or start due to voltage not reaching the startup set value, and low power generation caused by issues with PV modules or inverters. Typical problems that may occur in system components are burnout of junction boxes and local burnout of PV modules.2. How to handle common faults of distributed
Leon
09/06/2025
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
Edwiin
08/28/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.