Integrated Optimization Solution for Power Plant Electrical Systems

08/05/2025

Ⅰ. Core Objectives

Enhance power generation efficiency, ensure power supply reliability, reduce full life-cycle operational costs, and achieve intelligent regulation of power systems.

Ⅱ. Core Subsystem Optimization Solutions

Dedicated Solution for Power Transformers
Pain Point Analysis: Transformers serve as the critical hub for power transmission, accounting for 3%~5% of total plant energy losses. Failure-induced downtime leads to complete plant power outages.

1. ​Transformer Selection & Technological Innovation

Optimization Direction

Implementation Strategy

Technical Benefits

Ultra-Efficient Transformers

Adopt ​SCRBH15-class or higher amorphous alloy transformers​ or ​Grade-1 energy-efficient oil-immersed transformers

40%~70% reduction in no-load loss, saving 100,000 kWh/year per unit

Impedance Optimization Design

Customize impedance values based on short-circuit current (±2% accuracy)

Suppresses short-circuit impact, enhances equipment safety

Intelligent Cooling System

Integrate VFD fans + oil pumps with coordinated control

50% power reduction at <60% load, noise ≤65dB

2. ​Key Performance Enhancement Path

graph LR

A[Electromagnetic Optimization] --> B[Stepped Lap Core]

A --> C[Epoxy Resin Vacuum Casting]

B --> D[15% Eddy Current Loss Reduction]

C --> E[Partial Discharge <5pC]

E --> F[Lifespan Extended to 40 Years]

3. ​Digital O&M System

  • Condition Sensing Layer
    • Embedded fiber-optic temperature sensors (±0.5°C accuracy)
    • Online DGA monitoring (H₂, C₂H₂ warning threshold ≤1ppm)
  • Intelligent Diagnostic Platform
    • IEEE C57.91 thermal aging model for lifespan prediction
    • Reinforcement learning algorithms for inter-turn fault localization (≥92% accuracy)

Ⅲ. System-Level Collaborative Optimization

Transformer-Subsystem Integration

Collaborative Module

Optimization Measure

Comprehensive Benefit

Generators

18-pulse rectifier transformer configuration

THD reduced from 8% → 2%

Switchgear

Transformer-GIS protection coordination time ≤15ms

Fault clearance speed ×3 faster

Load Management

±10% dynamic voltage regulation (OLTC)

Voltage compliance rate ≥99.99%

Ⅳ. Quantified Implementation Benefits

Metric

Pre-Optimization

Post-Optimization

Improvement

Comprehensive Efficiency

95.2%

98.1%

↑ 3.04%

Unplanned Outages

2.3 times/year

0.2 times/year

↓ 91.3%

Coal Consumption per kWh

285g/kWh

263g/kWh

↓ 7.7%

O&M Cost

18 USD/kVA/year

9.5 USD/kVA/year

↓ 47.2%

Note: Standard coal equivalent

Ⅴ. Key Technical Safeguards

  1. Life-Cycle Cost (LCC) Model
    • Procurement cost ratio: 75% → 45%, emphasizing 20-year O&M optimization
  2. Electro-Thermal-Mechanical Multi-physics Simulation​ (ANSYS Maxwell + Fluent)
    • Hotspot temperature error ≤3K, design margin reduced by 15%
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!