Special Transformer Solutions with Structural Optimization and Advanced Processes

07/28/2025

Ⅰ. Core Challenges and Innovation Approach
Traditional transformers are constrained by structural redundancy, material performance bottlenecks, and insufficient process precision, failing to meet demands in specialized scenarios (e.g., space-constrained, high short-circuit risk, harsh environments). This solution achieves performance leaps and scenario adaptability through 3D structural optimization, cutting-edge material upgrades, and precision process innovations.

II. Key Solution Highlights
(1) Structural Innovation: Modularity and Enhanced Functionality

1. ​Shell-Type Structure

  • Applications: Urban underground substations, offshore wind power step-up transformers, compact data centers

  • Advantages:
    Uniform magnetic flux distribution, short-circuit withstand capacity ↑30%–40%
    20% smaller volume than core-type structures, ideal for height-limited spaces

2. ​Foil Winding Technology

  • Applicable Types: Distribution transformers, rectifier transformers, mining-specific transformers
  • Innovative Value:
    Axial heat dissipation area ↑50%, temperature rise ↓15–20K
    Evenly distributed short-circuit electrodynamic forces, withstand capacity ↑25%

​3. Split Winding/Phase-Shifting Winding
Core Functions:

  • 18-pulse/24-pulse phase-shifting design suppresses 5/7/11th harmonics, THD <3%
  • Multi-channel isolated output (e.g., electroplating power supplies), voltage deviation ≤0.5%

​4. Compact Modular Design
Process Integration:

  • Split tank + on-site argon arc welding sealing
  • Transport unit weight <80 tons, suitable for mountainous/island terrains

(2) Material Innovation: Performance and Sustainability Breakthroughs

Material Category

Innovative Application

Performance Advantages

New Insulation

Nomex® paper + DDP film composite system

Class H heat resistance (180°C) · Dielectric strength ↑20%

Eco-Cooling Medium

Natural ester (FR3™)/Fluorinated fluid (Novec™)

Ignition point ​>300°C​ · Biodegradability >98%

Lightweight Structure

High-strength Al alloy (Series 6) for tanks

Weight ↓30% · Corrosion-resistant lifespan +15 years

Typical Scenarios:

   

• Fluorinated fluid cooling: Data center immersion transformers (Fire Class F0)

   

• Natural ester oil: Subway tunnel transformers (zero toxic leakage risk)

   

(3) Process Innovation: Precision Manufacturing and Lifecycle Assurance

​1. Vacuum Pressure Impregnation (VPI)

  • Deep epoxy resin penetration (vacuum level <50Pa)
  • Insulation layer porosity ≈0, partial discharge <5pC

2. ​Step-Lap Core Stacking

  • 45° mitered joints laser-aligned, gap <0.1mm
  • Results: No-load loss ↓10%–15%, noise ≤55dB(A)

3. ​High-Precision Welding

  • Laser/robotic automated welding
  • Weld strength consistency ​>99%​​ Leakage rate <0.1%

4. ​Digital Pre-Integration

  • Built-in fiber-optic temperature (DGA) + vibration sensor interfaces
  • Enables real-time health assessment via digital twin systems

III. Target Achievements

Dimension

Traditional Solution

This Solution

Space Efficiency

Bulky volume

Footprint ↓25%–40%

Short-Circuit Withstand

25kA/2s

35kA/3s withstand

Eco-Friendliness

Mineral oil (pollution risk)

100% biodegradable · Carbon footprint ↓60%

Lifecycle Cost

High maintenance

Predictive maintenance · Failure rate↓45%

Extreme Environment

-40℃~+40℃

Stable operation at ​-50℃~+65℃

IV. Application Scenario Validation

  1. Renewable Energy Plants: Shell-type + split winding design → Resolves harmonic disturbances and frequent short-circuit impacts.
  2. Underground Smart Substations: Fluorinated fluid cooling + compact modularity → Zero fire risk · Maintenance-free for >10 years.
  3. Offshore Wind Platforms: Lightweight Al alloy + step-lap stacking → Salt mist corrosion resistance · No-load loss <0.15%.
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!