• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Current Limiting Reactor

Edwiin
Edwiin
Field: Power switch
China

Current Limiting Reactor

A current limiting reactor is an inductive coil characterized by a significantly higher inductive reactance compared to its resistance, designed to restrict short-circuit currents during fault conditions. These reactors also mitigate voltage disturbances in the remainder of the power system. They are installed in feeders, tie lines, generator leads, and between bus sections to reduce the magnitude of short-circuit currents and alleviate associated voltage fluctuations.

Under normal operating conditions, current reactors allow unimpeded power flow. However, during a fault, the reactor restricts disturbances to the faulty section. Since the system's resistance is negligible compared to its reactance, the reactor's presence has minimal impact on overall system efficiency.

Main Function of Current Limiting Reactor

The primary objective of a current limiting reactor is to maintain its reactance when large short-circuit currents flow through its windings. When fault currents exceed approximately three times the rated full-load current, iron-cored reactors with large cross-sectional areas are used to limit fault currents. However, their high cost and weight due to bulky iron cores make air-cored reactors the preferred choice for short-circuit current limitation in most applications.

  • Iron-Cored Reactors: Prone to hysteresis and eddy current losses, leading to higher power consumption.

  • Air-Cored Reactors: Exhibit total losses typically around 5% of their KVA rating, making them more efficient.

Functions of Current Limiting Reactor

  • Fault Current Protection: Reduces short-circuit current flow to safeguard equipment from mechanical stress and overheating.

  • Voltage Disturbance Mitigation: Dampens voltage fluctuations caused by short circuits.

  • Fault Isolation: Restricts fault currents to the affected section, preventing spread to healthy feeders and maintaining supply continuity.

Drawbacks of Current Limiting Reactor

  • Increases the total percentage reactance of the circuit when integrated into the network.

  • Degrades power factor and exacerbates voltage regulation issues.

Location of Reactors in Power Systems

Reactors are strategically placed in series with generators, feeders, or bus bars to limit short-circuit currents:

  • Generator Reactors: Installed between generators and generator buses to provide individual machine protection, typically with a reactance of ~0.05 per unit.

    • Drawback: A fault in one feeder can impact the entire system due to shared reactor configuration.

Disadvantages of Such Reactors

The drawbacks of this type of reactor are twofold: it fails to protect generators against short-circuit faults occurring across bus bars, and it causes constant voltage drops and power losses during normal operation.

Bus-Bar Reactors

When reactors are installed in bus bars, they are termed bus-bar reactors. Inserting reactors into bus bars helps avoid constant voltage drops and power losses. Below is an explanation of bus-bar reactors in ring systems and tie systems:

Bus-Bar Reactors (Ring System)

Bus-bar reactors serve to connect separate bus sections, which consist of generators and feeders linked to a common bus bar. In this configuration, each feeder is typically supplied by a single generator. Under normal operation, only a small amount of power flows through the reactors, resulting in low voltage drops and power losses. To minimize voltage drops across them, bus-bar reactors are therefore designed with high ohmic resistance.

When a fault occurs in any feeder, only one generator supplies the fault current, while the current from other generators is limited by the bus-bar reactors. This reduces heavy current and voltage disturbances caused by short circuits on a bus section, confining them to the faulty section alone. The only drawback of this reactor configuration is its inability to protect generators connected to the faulted section.

Bus-Bar Reactors (Tie-Bus System)

This represents a modification of the above system. In a tie-bus configuration, generators are connected to the common bus bar via reactors, with feeders supplied from the generator side.

The system operates similarly to the ring system but offers additional advantages. In this configuration, if the number of sections increases, the fault current will not exceed a specific value, which is determined by the specifications of individual reactors.

Give a tip and encourage the author!
Recommended
Why You Can't Remove Siemens GIS Bushing Cover for PD Testing
Why You Can't Remove Siemens GIS Bushing Cover for PD Testing
As the title suggests, when performing live partial discharge (PD) testing on Siemens GIS using the UHF method—specifically by accessing the signal through the metal flange of the bushing insulator—you must not directly remove the metal cover on the bushing insulator.Why?You won’t realize the danger until you try. Once removed, the GIS will leak SF₆ gas while energized! Enough talk—let’s go straight to the diagrams.As shown in Figure 1, the small aluminum cover inside the red box is typically th
James
10/24/2025
Why Cement Sealing Is Banned for GIS Wall Penetrations?
Why Cement Sealing Is Banned for GIS Wall Penetrations?
Indoor GIS equipment typically involves wall-penetrating installations, except in cases with cable in/out connections. In most cases, the main or branch bus duct extends from indoors through a wall to the outdoor side, where it connects to porcelain or composite bushings for overhead line connections. The gap between the wall opening and the GIS bus enclosure, however, is prone to water and air leakage and therefore usually requires sealing. This article discusses why cement-based sealing is not
Echo
10/24/2025
How Acoustic Imaging Locates GIS Defects
How Acoustic Imaging Locates GIS Defects
In recent years, acoustic imaging technology for GIS defect detection has developed rapidly. This technology enables intuitive sound source localization, helping operation and maintenance personnel focus on the exact location of GIS defects, thereby improving the efficiency of defect analysis and resolution.Sound source localization is only the first step. It would be even more ideal if common GIS defect types could be automatically identified using artificial intelligence (AI), along with intel
Edwiin
10/24/2025
What Are the Types of Reactors? Key Roles in Power Systems
What Are the Types of Reactors? Key Roles in Power Systems
Reactor (Inductor): Definition and TypesA reactor, also known as an inductor, generates a magnetic field within the surrounding space when current flows through a conductor. Therefore, any current-carrying conductor inherently possesses inductance. However, the inductance of a straight conductor is small and produces a weak magnetic field. Practical reactors are constructed by winding the conductor into a solenoid shape, known as an air-core reactor. To further increase inductance, a ferromagnet
James
10/23/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.