• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Working Principle of Wind Turbine

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

WechatIMG1818.jpeg

How Does Wind Turbine Work?

There is an air turbine of large blades attached on the top of a supporting tower of sufficient height. When wind strikes on the turbine blades, the turbine rotates due to the design and alignment of rotor blades. The shaft of the turbine is coupled with an electrical generator. The output of the generator is collected through electric power cables.

Working of Wind Turbine

When the wind strikes the rotor blades, blades start rotating. The turbine rotor is connected to a high-speed gearbox. Gearbox transforms the rotor rotation from low speed to high speed. The high-speed shaft from the gearbox is coupled with the rotor of the generator and hence the electrical generator runs at a higher speed. An exciter is needed to give the required excitation to the magnetic coil of the generator field system so that it can generate the required electricity. The generated voltage at output terminals of the alternator is proportional to both the speed and field flux of the alternator. The speed is governed by wind power which is out of control. Hence to maintain uniformity of the output power from the alternator, excitation must be controlled according to the availability of natural wind power. The exciter current is controlled by a turbine controller which senses the wind speed. Then output voltage of electrical generator(alternator) is given to a rectifier where the alternator output gets rectified to DC. Then this rectified DC output is given to line converter unit to convert it into stabilized AC output which is ultimately fed to either electrical transmission network or transmission grid with the help of step up transformer. An extra units is used to give the power to internal auxiliaries of wind turbine (like motor, battery etc.), this is called Internal Supply Unit.
There are other two control mechanisms attached to a modern big wind turbine.

  • Controlling the orientation of the turbine blade.

  • Controlling the orientation of the turbine face.

The orientation of turbine blades is governed from the base hub of the blades. The blades are attached to the central hub with the help of a rotating arrangement through gears and small electric motor or hydraulic rotary system. The system can be electrically or mechanically controlled depending on its design. The blades are swiveled depending upon the speed of the wind. The technique is called pitch control. It provides the best possible orientation of the turbine blades along the direction of the wind to obtain optimized wind power.

The orientation of the nacelle or the entire body of the turbine can follow the direction of changing wind direction to maximize mechanical energy harvesting from the wind. The direction of the wind along with its speed is sensed by an anemometer (automatic speed measuring devices) with wind vanes attached to the back top of the nacelle. The signal is fed back to an electronic microprocessor-based controlling system which governs the yaw motor which rotates the entire nacelle with gearing arrangement to face the air turbine along the direction of the wind.
An internal Block diagram of a wind turbine
wind turbine


Give a tip and encourage the author!
Recommended
What Are the Types of Reactors? Key Roles in Power Systems
What Are the Types of Reactors? Key Roles in Power Systems
Reactor (Inductor): Definition and TypesA reactor, also known as an inductor, generates a magnetic field within the surrounding space when current flows through a conductor. Therefore, any current-carrying conductor inherently possesses inductance. However, the inductance of a straight conductor is small and produces a weak magnetic field. Practical reactors are constructed by winding the conductor into a solenoid shape, known as an air-core reactor. To further increase inductance, a ferromagnet
James
10/23/2025
35kV Distribution Line Single-Phase Ground Fault Handling
35kV Distribution Line Single-Phase Ground Fault Handling
Distribution Lines: A Key Component of Power SystemsDistribution lines are a major component of power systems. On the same voltage-level busbar, multiple distribution lines (for input or output) are connected, each with numerous branches arranged radially and linked to distribution transformers. After being stepped down to low voltage by these transformers, electricity is supplied to a wide range of end users. In such distribution networks, faults such as phase-to-phase short circuits, overcurre
Encyclopedia
10/23/2025
Why Does MVDC Grounding Cause System Faults?
Why Does MVDC Grounding Cause System Faults?
Analysis and Handling of DC System Grounding Faults in SubstationsWhen a DC system grounding fault occurs, it can be classified as single-point grounding, multi-point grounding, loop grounding, or reduced insulation. Single-point grounding is further divided into positive-pole and negative-pole grounding. Positive-pole grounding may cause misoperation of protection and automatic devices, while negative-pole grounding may lead to failure to operate (e.g., relay protection or tripping devices). On
Felix Spark
10/23/2025
MVDC: Future of Efficient, Sustainable Power Grids
MVDC: Future of Efficient, Sustainable Power Grids
The Global Energy Landscape Is Undergoing a Fundamental Transformation toward a "fully electrified society," characterized by widespread carbon-neutral energy and the electrification of industry, transportation, and residential loads.In today’s context of high copper prices, critical mineral conflicts, and congested AC power grids, Medium-Voltage Direct Current (MVDC) systems can overcome many limitations of traditional AC networks. MVDC significantly enhances transmission capacity and efficienc
Edwiin
10/21/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.