Dry Contacts: What is it? (Dry Contact vs Wet Contact, Examples)

03/26/2024

What Is A Dry Contact

What is a Dry Contact?

A dry contact (also known as a volt free contact or potential-free contact) is defined as a contact in which power/voltage is not directly provided from the switch but is instead always being supplied by another source. Dry contacts are known as passive contacts, as no energy is applied to the contacts.

Dry contact simply operates like an ordinary switch that opens or closes the circuit. When the contacts are closed the current flows through the contacts and when the contacts are opened no current flows through the contacts.

It can be referred to as the secondary sets of contacts of a relay circuit which does not make or break the primary current being controlled by the relay. Hence dry contacts are used to provide complete isolation. The dry contact is shown in the below figure.

Dry Contact
Dry Contact

Dry contacts are commonly found in the relay circuit. As in a relay circuit, there is no external power directly applied to the contacts of the relay, the power is always being supplied by another circuit.  

Dry contacts are primarily used in low-voltage (less than 50 V) AC distribution circuits. It can also be used to monitor alarms such as fire alarms, burglar alarms and alarms used power systems.

Dry Contact Vs. Wet Contact

The differences between dry contact and wet contact are discussed in the table below.

Dry Contact Wet Contact
Dry contact is one in which the power is always being supplied by another source. Wet contact is one in which the power is being supplied by the same power source that the control circuit is used to switch the contact.
It can operate as an ordinary single-pole ON/OFF switch. It operates like a controlled switch.
It can be referred to as a secondary set of contacts of the relay circuit. It can be referred to as the primary set of contacts.
Dry Contacts is used to provide isolation between devices. Wet contacts provide the same power for controlling the device. Hence it does not provide isolation between devices.
Dry contacts are also known as “Passive” contacts. Wet contacts are known as “Active” or “Hot” contacts.
It is commonly found in the relay circuit because the relay does not supply any intrinsic power to the contact. It is used in the control circuit where the power is intrinsic to the device to switch the contacts. Example: Control Panel, temperature sensors, air-flow sensor, etc..
Dry contacts mean a relay that does not use mercury-wetted contacts. Wet contacts mean a relay that uses mercury-wetted contacts.
The main advantage of the dry contacts is that it provides complete isolation between the devices. The main advantage of the wet contact is that it makes troubleshooting much easier because of the simplicity of wiring and the same voltage level.

Dry Contact and Wet Contact

Summary: The dry contacts open or close the circuit and provides complete isolation between the devices hence, the output power is completely isolated from the input power. Whereas, the wet contacts do not provide complete isolation hence output power is immediately supplied along with the input power whenever the switch is energized.

Dry Contact Relay

In a dry contact relay, the contacts are opened or closed without using any voltage. Hence, we can control the dry contact relay at any voltage level.

The RIB series dry contact input relay uses different dry contacts such as switches, thermostats, relays, and solid-state switches, etc. The dry contact input RIB provides the low-voltage signal to operates the relay by closing the dry contact.

The power to energize the relay can be provided by using a separate wire. The relay contacts and the dry contacts are isolated from the input power hence they can be wired to switch any load.

The RIB02BDC dry contact relay is shown in the figure below. This relay has dry contacts and it can be used in different types of power applications.

RIB02BDC Dry Contact Relay
RIB02BDC Dry Contact Input Relay

Another example of a dry contact relay that is used to control the blower motor is shown in the figure below. When 24 V applied to the relay coil the dry contact is close and it operates the blower motor.

Blower Motor Controlled By Dry Contact Relay
Blower Motor Controlled By Dry Contact Relay

Dry and Wet Contact Examples

Some of the examples of dry contacts and wet contacts are discussed below.

Dry Contact Examples

Dry contacts are used in all types of relay, including a solid-state relay. One of the advantages of using dry contact in a relay that the relay provides a wide variety of output voltage levels. For example, a relay with a 24 V coil, a dry contact will allow controlling the load at any voltage level. This cannot be achieved by the wet contacts because the wet contacts use the same voltage level to control the load.

Another example is the dry contact in a compressor contactor. The compressor contactor has a separate 24 V coil and the power supply does not provide power directly to the compressor contactor. Hence, dry contacts are mostly used because it provides complete isolation between devices.

Dry contacts are used in PLC modules in which input voltage 24 V is provided to the input of PLC modules and output is provided with separate control voltage 5 V from the processor.

Wet Contact Examples

A thermostat is the most common example of a wet contact. A thermostat has the same power supply to power the control and its contact, it means that the power supply directly provides power to the control circuit and its contact. 

Wet contacts are commonly found in solid-state switching’s, such as proximity sensors, temperature sensors, and air-flow sensors, in which the same voltage levels are provided to the sensor and the load, no extra common power wires are required, also the power consumption of the sensor and the load is very small.  

Proximity Sensors Wet Contacts
Proximity Sensor Utilizes Wet Contact

In a Ground Fault Interrupter (GFI) circuit the same wire is used to provide the power to the internal circuit and the output terminals. Hence wet contacts are used in the GFI circuit.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!