• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Series RLC Circuit (Circuit & Phasor Diagram)

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What is a Series RLC Circuit?

A series RLC circuit is one the resistor, inductor and capacitor are connected in series across a voltage supply. The resulting circuit is called series RLC circuit. A circuit and phasor diagram for a series RLS circuit has been shown below.

Phasor Diagram of Series RLC Circuit

The phasor diagram of series RLC circuit is drawn by combining the phasor diagram of resistor, inductor and capacitor. Before doing so, one should understand the relationship between voltage and current in case of resistor, capacitor and inductor.

series rlc circuit
phasor diagram for rl circuit


    1. Resistor
      In case of resistor, the voltage and the current are in same phase or we can say that the phase angle difference between voltage and current is zero.

    2. Inductor
      In inductor, the voltage and the current are not in phase. The voltage leads that of current by 90° or in the other words, voltage attains its maximum and zero value 90° before the current attains it.

    3. Capacitor
      In case of capacitor, the current leads the voltage by 90° or in the other words, voltage attains its maximum and zero value 0° after the current attains it i.e the phasor diagram of capacitor is exactly opposite of inductor.


vector diagram of rlc circuit

NOTE: For remembering the phase relationship between voltage and current, learn this simple word called ‘CIVIL’, i.e in capacitor current leads voltage and voltage leads current in inductor.
civil
RLC Circuit
For drawing the phasor diagram of series RLC circuit, follow these steps:

Step – I. In case of series RLC circuit; resistor, capacitor and inductor are connected in series; so, the current flowing in all the elements are same i.e I r = Il = Ic = I. For drawing the phasor diagram, take current phasor as reference and draw it on horizontal axis as shown in diagram.
Step – II. In case of resistor, both voltage and current are in same phase. So draw the voltage phasor, VR along same axis or direction as that of current phasor i.e VR is in phase with I.
Step – III. We know that in inductor, voltage leads current by 90° so draw Vl (voltage drop across inductor) perpendicular to current phasor in leading direction.
Step – IV. In case of capacitor, the voltage lags behind the current by 90° so draw Vc (voltage drop across capacitor) perpendicular to current phasor in downwards direction.
Step – V. For drawing the resultant diagram, draw Vc in upwards direction. Now draw resultant, Vs which is vector sum of voltage Vr and VL – VC.
vector diagram of rlc circuit

Impedance for a Series RLC Circuit

vector diagram of rlc circuit
The impedance Z of a series RLC circuit is defined as opposition to the flow of current, due to circuit resistance R, inductive reactance, XL and capacitive reactance, XC. If the inductive reactance is greater than the capacitive reactance, i.e XL > XC, then the RLC circuit has lagging phase angle and if the capacitive reactance is greater than the inductive reactance, i.e XC > XL then the RLC circuit have leading phase angle and if both inductive and capacitive are the same, i.e XL = XC then circuit will behave as purely resistive circuit.

We know that,

Substituting the values VS2 = (IR)2 + (I XL – I XC )2

From this impedance triangle: by using Pythagoras theorem we get;

Variation in Resistance, Reactance and Impedance with Frequency

rlc circuit
In series RLC circuit, three types of impedance are involved-

  1. Electrical resistance – Resistance is independent of frequency, so it remains constant with change in frequency.

  2. Inductive reactance, XL – We know that XL = 2πfL. So, inductive reactance varies directly with frequency. So the graph between frequency and inductive reactance is a straight line passing through the centre as shown by curve a.

  3. Capacitive reactance, XC – From the formula of capacitive reactance, XC = 1/ 2πfC so, capacitive reactance varies inversely with frequency. Since the net reactance is ( XL – XC). So for drawing curve of ( XL – XC), firstly draw the graph of ( -XC) which is shown by curve b and then draw a curve for net reactance which is shown as curve c.

  4. The total impedance of circuit is shown by curve d which is obtained by adding constant resistor value to the net reactance.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.


Give a tip and encourage the author!
Recommended
What Is the Current Status and Detection Methods of Single-Phase Grounding Faults?
What Is the Current Status and Detection Methods of Single-Phase Grounding Faults?
Current Status of Single-Phase Grounding Fault DetectionThe low accuracy of single-phase grounding fault diagnosis in non-effectively grounded systems is attributed to several factors: the variable structure of distribution networks (such as looped and open-loop configurations), diverse system grounding modes (including ungrounded, arc-suppression coil grounded, and low-resistance grounded systems), the increasing annual ratio of cable-based or hybrid overhead-cable wiring, and complex fault typ
Leon
08/01/2025
Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
Tuning Method for Measuring Ground Parameters of Arc Suppression Coil Grounded Systems
Tuning Method for Measuring Ground Parameters of Arc Suppression Coil Grounded Systems
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Impact of Grounding Resistance on Zero-Sequence Voltage Rise in Different Grounding Systems
Impact of Grounding Resistance on Zero-Sequence Voltage Rise in Different Grounding Systems
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.