Parallel Resonance

04/24/2025

Parallel resonance occurs in an alternating current (AC) circuit when the circuit current aligns in phase with the applied voltage. This phenomenon specifically takes place in circuits that feature an inductor and a capacitor connected in parallel.

To gain a more comprehensive understanding of parallel resonance, let's examine the circuit diagram presented below.

image.png

Let's consider an inductor with an inductance of L henries and an internal resistance of R ohms, which is connected in parallel with a capacitor having a capacitance of C farads. An alternating supply voltage of V volts is applied across these parallel - connected elements.

In this parallel - resonant circuit configuration, the circuit current Ir will be in perfect phase alignment with the supply voltage only when the condition expressed by the following equation is met.

image.png

Phasor Diagram

The phasor diagram of the given circuit is shown below:

image.png

Let's consider an inductor with an inductance of L henries, which has an inherent resistance of R ohms, connected in parallel with a capacitor of capacitance C farads. An alternating supply voltage of V volts is applied across this parallel combination of the inductor and capacitor.

In this electrical setup, the circuit current Ir will precisely align in phase with the supply voltage if and only if the specific condition described by the following equation is satisfied.

image.png

image.png

If R is very small as compared to L, then resonant frequency will be

image.png

Effect of Parallel Resonance

At parallel resonance line current Ir = IL cosϕ or

image.png

Therefore, the circuit impedance will be given as:

image.png

Based on the preceding discussion of parallel resonance, the following key conclusions can be drawn:

 Impedance Characteristics

During parallel resonance, the circuit impedance manifests as purely resistive. This is because the frequency - dependent terms that typically govern the behavior of inductors and capacitors in an AC circuit cancel each other out, leaving only a resistive component. When the inductance (L) is measured in henries, the capacitance (C) in farads, and the resistance (R) in ohms, the circuit impedance Zr is also expressed in ohms.

High Impedance Value

The magnitude of Zr is notably high. At the point of parallel resonance, the ratio L/C reaches a significant value, which directly contributes to the elevated impedance of the circuit. This high impedance is a distinctive feature that sets parallel - resonant circuits apart from others.

 Low Circuit Current

Given the formula for circuit current  Ir = V/Zr, and considering the high value of Zr, the resulting circuit current Ir is very small. Even with a relatively constant supply voltage V, the high impedance acts as a strong barrier to current flow, keeping the current drawn from the source to a minimum.

 Branch Current vs. Line Current

The currents flowing through the capacitor and the inductor (coil) are substantially larger than the line current. This occurs because the impedance of each individual branch (the inductor - resistance combination and the capacitor) is much lower than the overall circuit impedance Zr. As a result, a greater amount of current is able to circulate within these branches compared to the current that flows through the main line of the circuit.

Rejector Circuit Nature

Due to its ability to draw minimal current and power from the electrical mains, the parallel - resonant circuit is often referred to as a "rejector circuit." It effectively .

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!