
Bu, verilen hat ve düğme verilerinden bir güç sistemi ağının durağan çalışma özelliklerini belirlemek için gerekli olan hesaplama prosedürüdür (nümerik algoritmalar).
Yük akışı hakkında bilmeniz gerekenler:
Yük akışı çalışması, bir güç sistemi ağının durağan durum analizidir.
Yük akışı çalışması, belirli bir yük için sistemin çalışma durumunu belirler.
Yük akışı, sistemin her düğümünde iki bilinmeyen değişken (|V| ve ∠δ) için eşzamanlı doğrusal olmayan cebirsel güç denklemlerini çözer.
Doğrusal olmayan cebirsel denklemleri çözmek için hızlı, etkili ve doğru nümerik algoritmaların olması önemlidir.
Yük akışı analizinin çıktısı, gerilim ve faz açısı, gerçek ve reaktif güç (her hatın her iki tarafında), hat kayıpları ve rezerv düğüm gücüdür.
Yük akışı çalışması aşağıdaki üç adımı içerir:
Güç sistem bileşenleri ve ağının modelleme.
Yük akışı denklemlerinin geliştirilmesi.
Nümerik teknikler kullanarak yük akışı denklemlerinin çözülmesi.
Jeneratör
Yük
İletim Hattı
Bir iletim hattı nominal π modeli olarak temsil edilir.
Burada, R + jX hat impedansıdır ve Y/2 yarım hat şarj itişkinliğidir.
Nominal Olmayan Tepki Değiştirici Dönüştürücü
Nominal bir dönüştürücü için ilişki
Ancak nominal olmayan bir dönüştürücü
Bu nedenle, nominal olmayan bir dönüştürücü için dönüşüm oranı (a) şu şekilde tanımlanır
Şimdi, bir hat içinde nominal olmayan bir dönüştürücüyü eşdeğer bir modele dönüştürmek istiyoruz.
Şekil 2: Nominal Olmayan Dönüştürücü İçeren Hat
Yukarıdaki şema p ve q düğümleri arasında bir eşdeğer π modeline dönüştürmek istiyoruz.
Şekil 3: Hatın Eşdeğer π Modeli
Amacımız, bu itişkinlik değerlerini bulmaktır: Y1, Y2 ve Y3 böylece Şekil 2, Şekil 3 ile temsil edilebilir.
Şekil 2'den,
Şimdi Şekil 3'ü ele alalım, Şekil 3'ten,
Denklem I ve III'ün katsayılarını karşılaştırarak Ep ve Eq değerlerini elde ederiz,
Benzer şekilde, denklem II ve IV'ten,
Bazı faydalı gözlemler
Yukarıdaki analizden, Y2, Y3 değerlerinin, dönüşüm oranına bağlı olarak pozitif veya negatif olabileceğini görüyoruz.
Harika soru!
Y = – olumsuz, reaktif gücün emilimini ifade eder, yani bir indüktör gibi davranır.
Y = + pozitif, reaktif gücün üretimini ifade eder, yani bir kondansatör gibi davranır.
Ağın Modelleme
Yukarıdaki şemada gösterildiği gibi iki düğme sistemini ele alalım.
Zaten gördük ki
i düğmesinde üretilen güç
i düğmesinde talep edilen güç
Bu nedenle, i düğmesine enjekte edilen net güç şu şekilde tanımlanır