How to Calculate Short Circuit Current?

Encyclopedia
09/09/2024


How to Calculate Short Circuit Current?


Short Circuit Current Definition


Short circuit current is defined as the large current that flows through an electrical system when a fault occurs, causing potential damage to circuit breaker components.


When a short circuit fault happens, a large current flows through the system, including the circuit breaker (CB). This flow, unless stopped by the CB tripping, subjects the CB parts to significant mechanical and thermal stresses.


If the CB’s conducting parts lack sufficient cross-sectional area, they can overheat, which may damage the insulation.CB contacts also heat up. Thermal stress in the contacts is proportional to I2Rt, where R is contact resistance, I is the short circuit current’s rms value, and t is the duration of current flow.


After initiating fault, the short circuit current stays until the interrupting unit of CB, breaks. Hence, time t is breaking time of the circuit breaker. As this time is very less in scale of mili second, it is assumed that all the heat produced during fault is absorbed by the conductor since there is no sufficient time for convention and radiation of heat.


The temperature rise can be determined by the following formula,


Where, T is the temperature rise per second in degree centigrade.I is the current (rms symmetrical) in Ampere.A is the cross-sectional area of the conductor.ε is the temperature coefficient of resistivity of the conductor at 20 oC.


5584feee8a6ee6ca73e5ae978f8e83a7.jpeg


Aluminum loses its strength above 160°C, so it’s crucial to keep the temperature rise below this limit. This requirement sets the allowable temperature rise during a short circuit, which can be managed by controlling the CB’s breaking time and designing the conductor dimensions properly.


Short Circuit Force


The electromagnetic force developed between two parallel electric current carrying conductors, is given by the formula,


587a622e76a005c51f2de5a820d23d47.jpeg


Where, L is the length of the both conductors in inch.S is the distance between them in inch.I is the current carried by each of the conductors.


It is experimentally proved that, electromagnetic short circuit force is maximum when the value of short circuit current I, is 1.75 times the initial rms value of the symmetrical short circuit current wave.


However, in certain circumstances it is possible that, forces greater than these may develop, such as, for instance in the case of very rigid bars or due to resonance in the case of bars liable to mechanical vibration. Experiments have also shown that the reactions produced in a non resonating structure by an alternating current at the instant of application or removal of the forces may exceed the reactions experienced while the current is flowing.


Thus it is advisable to error on the side of safety and to allow for all contingencies, for which one should take into account the maximum force which could be developed by the initial peak value of the asymmetrical short circuit current. This force may be taken as having a value which is twice of that calculated from the above formula.


The formula is strictly useful for circular cross-sectional conductor. Although L is a finite length of the portions of conductors run parallel to each other, but the formula is only suitable where the total length of each conductor is assumed as infinite.


In practical cases the total length of the conductor is not infinite. It is also considered in mind, that, the flux density near the ends of current carrying conductor is considerably different than its middle portion.


Hence, if we use above formula for short conductor, the force calculated would be much higher than actual.It is seen that, this error may be eliminated considerably if we use the term.It is stead of L/S in the above formula.

 

The formula, represented by equation (2), gives error free result when the ratio L/S is greater than 20. When 20 > L/S > 4, formula (3) is suitable for error free result.


If L/S < 4, formula (2) is suitable for error free result. The above formulas are only applicable for circular cross-sectional conductors. But for rectangular cross-sectional conductor, the formula needs to have some correction factor. Say this factor is K. Hence, the above formula ultimately becomes.


Although the effect of shape of cross-section of conductor reduces rapidly if spacing between the conductor increases the value of K is maximum for strip like conductor whose thickness is quite less than its width. K is negligible when shape of cross-section of conductor is perfectly square. K is unity for perfectly circular cross-sectional conductor. This holds true for both standard and remote control circuit breaker.


8588f2b77011016e71162872d16a571a.jpeg

 

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
With the increasing complexity of power system operation environment and the deepening of power system reform, traditional power grids are accelerating the transformation to smart grids. The goal of equipment condition-based maintenance is achieved through real-time perception of equipment status by new sensors, reliable communication via modern network technology, and effective monitoring by background expert systems.I. Analysis of Condition-based Maintenance StrategyCondition-based Maintenance
Oliver Watts
06/11/2025
What is the current application status and development trend of medium-voltage switchgear?
What is the current application status and development trend of medium-voltage switchgear?
With the accelerated automation of power equipment, various medium-voltage switchgear have emerged in the market. Classified by insulation media, they are mainly divided into air-insulated, SF₆ gas-insulated and solid-insulated types, each with its own advantages and disadvantages: solid insulation offers good performance but poor environmental friendliness, SF₆ features excellent arc extinguishing capability but is a greenhouse gas, and air insulation has high cost-performance but larger volume
Echo
06/11/2025
What components make up the design of medium-voltage ring network distribution switchgear?
What components make up the design of medium-voltage ring network distribution switchgear?
As an expert who has been deeply engaged in the field of power system design for many years, I have always paid attention to the technological evolution and application practice of medium-voltage ring main distribution equipment. As a core electrical device in the secondary distribution link of the power system, the design and performance of such equipment are directly related to the safe and stable operation of the power supply network. The following is a professional analysis of the key design
Dyson
06/11/2025
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
1. Statistics on Common Faults of Medium-Voltage Switchgear in the Early Operation StageAs project participants, we found during the early operation of a new metro line: 21 sets of power supply equipment were put into use, with a total of 266 accident phenomena in the first year. Among them, 77 faults occurred in medium-voltage switchgear, accounting for 28.9%—significantly higher than faults in other equipment. Statistical analysis shows that major fault types include: protection device s
Felix Spark
06/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!